ترغب بنشر مسار تعليمي؟ اضغط هنا

The slow rise and recovery of the 2019 Crab pulsar glitch

251   0   0.0 ( 0 )
 نشر من قبل Benjamin Shaw
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present updated measurements of the Crab pulsar glitch of 2019 July 23 using a dataset of pulse arrival times spanning $sim$5 months. On MJD 58687, the pulsar underwent its seventh largest glitch observed to date, characterised by an instantaneous spin-up of $sim$1 $mu$Hz. Following the glitch the pulsars rotation frequency relaxed exponentially towards pre-glitch values over a timescale of approximately one week, resulting in a permanent frequency increment of $sim$0.5 $mu$Hz. Due to our semi-continuous monitoring of the Crab pulsar, we were able to partially resolve a fraction of the total spin-up. This delayed spin-up occurred exponentially over a timescale of $sim$18 hours. This is the sixth Crab pulsar glitch for which part of the initial rise was resolved in time and this phenomenon has not been observed in any other glitching pulsars, offering a unique opportunity to study the microphysical processes governing interactions between the neutron star interior and the crust.

قيم البحث

اقرأ أيضاً

We have observed a large glitch in the Crab pulsar (PSR B0531+21). The glitch occurred around MJD 58064 (2017 November 8) when the pulsar underwent an increase in the rotation rate of $Delta u = 1.530 times 10^{-5}$ Hz, corresponding to a fractional increase of $Delta u / u = 0.516 times 10^{-6}$ making this event the largest glitch ever observed in this source. Due to our high-cadence and long-dwell time observations of the Crab pulsar we are able to partially resolve a fraction of the total spin-up of the star. This delayed spin-up occurred over a timescale of $sim$1.7 days and is similar to the behaviour seen in the 1989 and 1996 large Crab pulsar glitches. The spin-down rate also increased at the glitch epoch by $Delta dot{ u} / dot{ u} = 7 times 10^{-3}$. In addition to being the largest such event observed in the Crab, the glitch occurred after the longest period of glitch inactivity since at least 1984 and we discuss a possible relationship between glitch size and waiting time. No changes to the shape of the pulse profile were observed near the glitch epoch at 610 MHz or 1520 MHz, nor did we identify any changes in the X-ray flux from the pulsar. The long-term recovery from the glitch continues to progress as $dot{ u}$ slowly rises towards pre-glitch values. In line with other large Crab glitches, we expect there to be a persistent change to $dot{ u}$. We continue to monitor the long-term recovery with frequent, high quality observations.
Glitches are sudden jumps in the spin frequency of pulsars believed to originate in the superfluid interior of neutron stars. Superfluid flow in a model neutron star is simulated by solving the equations of motion of a two-component superfluid consis ting of a viscous proton-electron plasma and an inviscid neutron condensate in a spherical Couette geometry. We examine the response of our model neutron star to glitches induced in three different ways: by instantaneous changes of the spin frequency of the inner and outer boundaries, and by instantaneous recoupling of the fluid components in the bulk. All simulations are performed with strong and weak mutual friction. It is found that the maximum size of a glitch that originates in the bulk decreases as the mutual friction strengthens. It is also found that mutual friction determines the fraction of the frequency jump which is later recovered, a quantity known as the healing parameter. These behaviours may explain some of the diversity in observed glitch recoveries.
169 - Xiangyun Long , Hua Feng , Hong Li 2021
We report follow-up observations of the Crab nebula with the PolarLight X-ray polarimeter, which revealed a possible variation in polarization associated with a pulsar glitch in 2019. The new observations confirm that the polarization has recovered r oughly 100 days after the glitch. With the new observations, we find that the polarization angle (PA) measured with PolarLight from the total nebular emission has a difference of 18.0 +- 4.6 (deg) from that measured 42 years ago with OSO-8, indicating a secular evolution of polarization with either the Crab nebula or pulsar. The long-term variation in PA could be a result of multiple glitches in the history, magnetic reconnection or movement of synchrotron emitting structures in the nebula, or secular evolution of the pulsar magnetic geometry.
Optical observations provide convincing evidence that the optical phase of the Crab pulsar follows the radio one closely. Since optical data do not depend on dispersion measure variations, they provide a robust and independent confirmation of the rad io timing solution. The aim of this paper is to find a global mathematical description of Crab pulsars phase as a function of time for the complete set of published Jodrell Bank radio ephemerides (JBE) in the period 1988-2014. We apply the mathematical techniques developed for analyzing optical observations to the analysis of JBE. We break the whole period into a series of episodes and express the phase of the pulsar in each episode as the sum of two analytical functions. The first function is the best-fitting local braking index law, and the second function represents small residuals from this law with an amplitude of only a few turns, which rapidly relaxes to the local braking index law. From our analysis, we demonstrate that the power law index undergoes instantaneous changes at the time of observed jumps in rotational frequency (glitches). We find that the phase evolution of the Crab pulsar is dominated by a series of constant braking law episodes, with the braking index changing abruptly after each episode in the range of values between 2.1 and 2.6. Deviations from such a regular phase description behave as oscillations triggered by glitches and amount to fewer than 40 turns during the above period, in which the pulsar has made more than 2.0e10 turns. Our analysis does not favor the explanation that glitches are connected to phenomena occurring in the interior of the pulsar. On the contrary, timing irregularities and changes in slow down rate seem to point to electromagnetic interaction of the pulsar with the surrounding environment.
72 - Roberta Zanin 2017
The last six years have witnessed major revisions of our knowledge about the Crab Pulsar. The consensus scenario for the origin of the high-energy pulsed emission has been challenged with the discovery of a very-high-energy power law tail extending u p to 400 GeV, above the expected spectral cut off at a few GeV. Now, new measurements obtained by the MAGIC collaboration extend the energy spectrum of the Crab Pulsar even further, on the TeV regime. Above 400 GeV the pulsed emission comes mainly from the inter-pulse, which becomes more prominent with energy due to a harder spectral index. These findings require gamma-ray production via inverse Compton scattering close to or beyond the light cylinder radius by an underlying particle population with Lorentz factors greater than 5 times 106. We will present those new results and discuss the implications in our current knowledge concerning pulsar environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا