ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronization studies at the LHC with ALICE

64   0   0.0 ( 0 )
 نشر من قبل Jianhui Zhu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jianhui Zhu




اسأل ChatGPT حول البحث

Studies of the production of heavy-flavour baryons are of prominent importance to investigate hadronization mechanisms at the LHC, in particular through the study of the evolution of the baryon-over-meson production ratio. Measurements performed in pp and p--Pb collisions at the LHC have revealed unexpected features, qualitatively similar to what was observed in heavy-ion collisions and, in the charm sector, not in line with the expectations based on previous measurements from $rm e^+e^-$ colliders and in ep collisions. These results suggest that charmed baryon formation might not be universal and that the baryon-over-meson ratio depends on the collision system or multiplicity. A review of ALICE measurements of charmed baryons, including $rm Lambda_c^+/D^0$ as a function of charged-particle multiplicity in pp, p--Pb and Pb--Pb collisions, $rm Sigma_c^{0, +, ++}/D^0$ and $rm Xi_c^{0, +}/D^0$ as a function of $p_{rm T}$ in pp collisions and $rm Gamma(Xi_c^0rightarrowXi^-e^+ u_e)/Gamma(Xi_c^0rightarrowXi^-pi^+)$, will be presented. Comparison to phenomenological models will be also discussed. Emphasis will be given to the discussion of the impact of these studies on the understanding of hadronization processes.



قيم البحث

اقرأ أيضاً

116 - Sushanta Tripathy 2020
Recent measurements in high-multiplicity pp and p-A collisions have revealed that these small collision systems exhibit collective-like behaviour, formerly thought to be achievable only in heavy-ion collisions. To understand the origins of these unex pected phenomena, event shape observables can be exploited, as they serve as a powerful tool to disentangle soft and hard contributions to particle production. Here, results on the production of light flavor hadrons for different classes of unweighted transverse spherocity ($S_{rm 0}^{p_{rm T}= 1}$) and relative transverse activity ($R_{rm{T}}$) in high multiplicity pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector are presented. Hadron-to-pion ratios in different $S_{rm 0}^{p_{rm T}= 1}$ and $R_{rm{T}}$ classes are also presented and compared with state-of-the-art QCD-inspired Monte Carlo event generators. The evolution of charged particle average transverse momentum ($langle p_{rm T}rangle$) with multiplicity and $S_{rm 0}^{p_{rm T}= 1}$ is also discussed. In addition, the system size dependence of charged particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$= 5.02 TeV is presented. Finally, within the same approach, we present a search for jet quenching behavior in small collision systems.
In this work we explore the possibility to perform ``effective energy studies in very high energy collisions at the CERN Large Hadron Collider (LHC). In particular, we focus on the possibility to measure in $pp$ collisions the average charged multipl icity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the Zero Degree Calorimeters. Analyses of this kind have been done at lower centre--of--mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to {it ion--ion} collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in $AA$ interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy $AA$ collisions. A mean charged multiplicity of about 1000-2000 per rapidity unit (at $eta sim 0$) is expected for the most central $Pb-Pb$ collisions at $sqrt{s_{NN}} = 5.5 TeV$.
79 - Ranbir Singh 2018
We present new measurements related to spin alignment of $mathrm{K^{*0}}$ vector mesons at mid-rapidity for Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 and 5.02 TeV. The spin alignment measurements are carried out with respect to production pla ne and second order event plane. At low $p_{mathrm{T}}$ the spin density matrix element $rho_{00}$ for $mathrm{K^{*0}}$ is found to have values slightly below 1/3, while it is consistent with 1/3, i.e. no spin alignment, at high $p_{mathrm{T}}$. Similar values of $rho_{00}$ are observed w.r.t. both production plane and event plane. Within statistical and systematic uncertainties, $rho_{00}$ values are also found to be independent of $sqrt{s_{mathrm{NN}}}$. $rho_{00}$ also shows centrality dependence with maximum deviation from 1/3 for mid-central collisions w.r.t. both the kinematic planes. The measurements for $mathrm{K^{*0}}$ in pp collisions at $sqrt{s}$ = 13 TeV and for $mathrm{K^{0}_{S}}$ (a spin 0 hadron) in 20-40% central Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 2.76 TeV are consistent with no spin alignment.
114 - Sushanta Tripathy 2020
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T } = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.
134 - R. Schicker 2014
The ALICE experiment at the Large Hadron Collider (LHC) at CERN consists of a central barrel, a muon spectrometer and additional detectors for trigger and event classification purposes. The low transverse momentum threshold of the central barrel give s ALICE a unique opportunity to study the low mass sector of central exclusive production at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا