ترغب بنشر مسار تعليمي؟ اضغط هنا

Conserved quantities, exceptional points, and antilinear symmetries in non-Hermitian systems

140   0   0.0 ( 0 )
 نشر من قبل Yogesh N. Joglekar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past two decades, open systems that are described by a non-Hermitian Hamiltonian have become a subject of intense research. These systems encompass classical wave systems with balanced gain and loss, semiclassical models with mode selective losses, and minimal quantum systems, and the meteoric research on them has mainly focused on the wide range of novel functionalities they demonstrate. Here, we address the following questions: Does anything remain constant in the dynamics of such open systems? What are the consequences of such conserved quantities? Through spectral-decomposition method and explicit, recursive procedure, we obtain all conserved observables for general $mathcal{PT}$-symmetric systems. We then generalize the analysis to Hamiltonians with other antilinear symmetries, and discuss the consequences of conservation laws for open systems. We illustrate our findings with several physically motivated examples.



قيم البحث

اقرأ أيضاً

79 - C. Li , Z. Song 2020
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topo logical feature: EPs correspond to topological defects of a real auxiliary 2D vector field in k space, which is obtained from the Bloch states of the non-Hermitian Hamiltonian. As a topological invariant, the topological charges of EPs can be $pm$1/2, obtained by the winding number calculation. Remarkably, we find that such a topological characterization remains for a finite number of coupled chains, even a single chain, in which the momentum in one direction is discrete. It shows that the EPs in the quasi-1D system still exhibit topological characteristics and can be an abridged version for a 2D system with symmetry protected EPs that are robust in perturbations, which proves that topological invariants for a quasi-1D system can be extracted from the projection of the corresponding 2D limit system on it.
Engineered non-Hermitian systems featuring exceptional points can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, electronics, to atomic physics. Here we introduce and present non-Hermiti an dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-PT symmetry and an exceptional point between its degenerate and non-degenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order exceptional points with two OPOs, tunable Floquet exceptional points in a reconfigurable dynamic non-Hermitian system, and generation of squeezed vacuum around exceptional points, all of which are not easy to realize in other non-Hermitian platforms. Our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities in realizing nonlinear dynamical systems for enhanced sensing and quantum information processing.
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q uantity near exceptional points in non-Hermitian systems, where it diverges in a way that fully controls the description of wavepacket trajectories. The quantum metric behaviour is responsible for a constant acceleration with a fixed direction, and for a non-vanishing constant velocity with a controllable direction. Both contributions are independent of the wavepacket size.
426 - Ci. Li , Zhi. Song 2015
We study quantum phase transitions in non-Hermitian XY and transverse-field Ising spin chains, in which the non-Hermiticity arises from the imaginary magnetic field. Analytical and numerical results show that at exceptional points, coalescing eigenst ates in these models close to W, distant Bell and GHZ states, which can be steady states in dynamical preparation scheme proposed by T. D. Lee et. al. (Phys. Rev. Lett. 113, 250401 (2014)). Selecting proper initial states, numerical simulations demonstrate the time evolution process to the target states with high fidelity.
We investigate the effects of non-Hermiticity on topological pumping, and uncover a connection between a topological edge invariant based on topological pumping and the winding numbers of exceptional points. In Hermitian lattices, it is known that th e topologically nontrivial regime of the topological pump only arises in the infinite-system limit. In finite non-Hermitian lattices, however, topologically nontrivial behavior can also appear. We show that this can be understood in terms of the effects of encircling a pair of exceptional points during a pumping cycle. This phenomenon is observed experimentally, in a non-Hermitian microwave network containing variable gain amplifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا