ﻻ يوجد ملخص باللغة العربية
Gravitational wave observations of compact binaries allow us to test general relativity (and modifications thereof) in the strong and highly-dynamical field regime of gravity. Here we confront two extensions to general relativity, dynamical Chern-Simons and Einstein-dilaton-Gauss-Bonnet theories, against the gravitational wave sources from the GWTC-1 and GWTC-2 catalogs by the LIGO-Virgo Collaboration. By stacking the posterior of individual events, we strengthen the constraint on the square root of the coupling parameter in Einstein-dilaton-Gauss-Bonnet gravity to $sqrt{alpha_{rm tiny EdGB}} < 1.7$ km, but we are unable to place meaningful constraints on dynamical Chern-Simons gravity. Importantly, we also show that our bounds are robust to (i) the choice of general-relativity base waveform model, upon which we add modifications, (ii) unknown higher post-Newtonian order terms in the modifications to general relativity, (iii) the small-coupling approximation, and (iv) uncertainties on the nature of the constituent compact objects.
We study the polarizations of gravitational waves (GWs) in two classes of extended gravity theories. First, we formulate the polarizations in linear massive gravity (MG) with generic mass terms of non-Fierz-Pauli type by identifying all the independe
We investigate the observability of higher harmonics in gravitational wave signals emitted during the coalescence of binary black holes. We decompose each mode into an overall amplitude, dependent upon the masses and spins of the system, and an orien
In this manuscript we will present the theoretical framework of the recently proposed infinite derivative theory of gravity with a non-symmetric connection. We will explicitly derive the field equations at the linear level and obtain new solutions wi
Using recent experimental results of detection of gravitational waves from the binary black hole signals by Advanced LIGO and Advanced Virgo, we investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally co
We perform a comprehensive study of gravitational waves in the context of the higher-order quadratic-scalar-curvature gravity, which encompasses the ordinary Einstein-Hilbert term in the action plus a $R^{2}$-contribution and a term of the type $Rsqu