ﻻ يوجد ملخص باللغة العربية
Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functions that facilitates the efficient search for new materials and material properties. We prove invariance under isometries, continuity, and completeness in the generic case, which are necessary features for the reliable comparison of crystals. The proof of continuity integrates methods from discrete geometry and lattice theory, while the proof of generic completeness combines techniques from geometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and related inclusion-exclusion formulae. We have implemented the algorithm and describe its application to crystal structure prediction.
It is shown that there exists a dihedral acute triangulation of the three-dimensional cube. The method of constructing the acute triangulation is described, and symmetries of the triangulation are discussed.
The Hausdorff distance, the Gromov-Hausdorff, the Frechet and the natural pseudo-distances are instances of dissimilarity measures widely used in shape comparison. We show that they share the property of being defined as $inf_rho F(rho)$ where $F$ is
The present work proposes a solution to the challenging problem of registering two partial point sets of the same object with very limited overlap. We leverage the fact that most objects found in man-made environments contain a plane of symmetry. By
In our previous two papers, we studied (positive) 3D gadgets in origami extrusions which create a top face parallel to the ambient paper and two side faces sharing a ridge with two simple outgoing pleats. Then a natural problem comes up whether it is
We consider the number of distinct distances between two finite sets of points in ${bf R}^k$, for any constant dimension $kge 2$, where one set $P_1$ consists of $n$ points on a line $l$, and the other set $P_2$ consists of $m$ arbitrary points, such