ترغب بنشر مسار تعليمي؟ اضغط هنا

DFT Investigation of pH-Driven Oxygen Vacancy Formation-Annihilation in CeO2

103   0   0.0 ( 0 )
 نشر من قبل Hongyang MAma
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is considerable interest in the pH-dependent switchable biocatalytic properties of cerium oxide nanoparticles (CeNPs) in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species at neutral and basic physiological pH but cytotoxic prooxidant activity at acidic pathological pH. Oxygen vacancies play a key role in such biocatalytic activities. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret the pH-induced behavior of the stable {111} surface of CeO2 at the atomic scale. Analysis of the surface-adsorbed media species reveals the critical role of pH on the reversibility of the Ce3+ and Ce4+ redox equilibria and the formation and annihilation of the oxygen vacancies. Under acidic conditions, this reversible switching is hindered owing to incomplete volumetric filling of the oxygen vacancies by the oxygen in the water molecules, hence effective retention of the oxygen vacancies, and consequent inhibition of redox biomimetic reactions. Under neutral and basic conditions, the capacity for this reversible switching is preserved due to complete filling of the oxygen vacancies by the OH ions owing to their ready size accommodation, thereby retaining the capacity for performing redox biomimetic reactions cyclically.



قيم البحث

اقرأ أيضاً

There is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO2) nanoparticles (CeNPs) in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) a t basic physiological pH but cytotoxic prooxidant activity in acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO2 containing oxygen vacancies. Analysis of the surface-adsorbed media species reveals the critical role of pH on the interaction between ROS and the defective CeO2 {111} surface. Under basic conditions, the superoxide dismutase (SOD) and catalase (CAT) biomimetic reactions can be performed cyclically, scavenging and decomposing ROS to harmless products, making CeO2 an excellent antioxidant. However, under acidic conditions, the CAT biomimetic reaction is hindered owing to the limited reversibility of Ce3+ and Ce4+ and formation and annihilation of oxygen vacancies. A Fenton biomimetic reaction is predicted to occur simultaneously with the SOD and CAT biomimetic reactions, resulting in the formation of hydroxyl radicals, making CeO2 a cytotoxic prooxidant.
It has been demonstrated in previous experimental and computational work that doping CeO2 with transition metals is an effective way of tuning its properties. However, each previous study on CeO2 doping has been limited to a single or a few dopants. In this paper, we systematically study the formation energies, structural stability and electronic properties of CeO2 doped with the entire range of the ten 3d transition metals using density functional theory (DFT) calculations at the hybrid level. The formation energies of oxygen vacancies, and their effects on electronic properties, were also considered. It is found that most of the 3d transition metal dopants can lower the band gap of CeO2, with V and Co doping significantly reducing the band gap to less than 2.0 eV. Furthermore, all of the dopants can lower the formation energy of oxygen vacancies, and those with higher atomic numbers, particularly Cu and Zn, are most effective for this purpose. The electronic structures of doped CeO2 compensated by oxygen vacancies show that the presence of oxygen vacancies can further lower the band gap for most of the dopants, with V-, Cr-, Fe-, Co-, Ni-, and Cu-doped CeO2 all having band gaps of less than 2.0 eV. These results suggest that doping CeO2 with 3d transition metals could enhance the photocatalytic performance under visible light and increase the oxygen vacancy concentration, and they could provide a meaningful guide for the design of CeO2-based materials with improved photocatalytic and catalytic performance as well as enhanced ionic conductivity.
145 - Tam Mayeshiba , Dane Morgan 2017
Oxygen vacancy formation energy is an important quantity for enabling fast oxygen diffusion and oxygen catalysis in technologies like solid oxide fuel cells. Both previous literature in various systems and our calculations in LaMnO3, La0.75Sr0.25MnO3 , LaFeO3, and La0.75Sr0.25FeO3, show mixed results for the direction and magnitude of the change in vacancy formation energy with strain. This paper develops a model to make sense of the different trend shapes in vacancy formation energy versus strain. We model strain effects using a set of consistent ab initio calculations, and demonstrate that our calculated results may be simply explained in terms of vacancy formation volume and changes in elastic constants between the bulk and defected states. A positive vacancy formation volume contributes to decreased vacancy formation energy under tensile strain, and an increase in elastic constants contributes to increases in vacancy formation energy with compressive and tensile strains, and vice versa. The vacancy formation volume dominates the linear portion of the vacancy formation energy strain response, while its curvature is governed by the vacancy-induced change in elastic constants. We show results sensitive to B-site cation, A-site doping, tilt system, and vacancy placement, which contributions may be averaged under thermally averaged conditions. In general, vacancy formation energies for most systems calculated here decreased with tensile strain, with about a 30-100 meV/% strain decrease with biaxial strain for those systems which showed a decrease in vacancy formation energy. Experimental verification is necessary to confirm the model outside of calculation.
We use first-principles calculations to investigate the stability of bi-axially strained textit{Pnma} perovskite CaMnO$_3$ towards the formation of oxygen vacancies. Our motivation is provided by promising indications that novel material properties c an be engineered by application of strain through coherent heteroepitaxy in thin films. While it is usually assumed that such epitaxial strain is accommodated primarily by changes in intrinsic lattice constants, point defect formation is also a likely strain relaxation mechanism. This is particularly true at the large strain magnitudes ($>$4%) which first-principles calculations often suggest are required to induce new functionalities. We find a strong dependence of oxygen vacancy defect formation energy on strain, with tensile strain lowering the formation energy consistent with the increasing molar volume with increasing oxygen deficiency. In addition, we find that strain differentiates the formation energy for different lattice sites, suggesting its use as a route to engineering vacancy ordering in epitaxial thin films.
The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c-axis. Its microscopic structure has been analyzed in detail comparing results from a semi-empirical N ewman superposition model analysis based on finestructure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B-site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of 1.0721.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا