ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning using Guided Observability

99   0   0.0 ( 0 )
 نشر من قبل Pascal Klink
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to recent breakthroughs, reinforcement learning (RL) has demonstrated impressive performance in challenging sequential decision-making problems. However, an open question is how to make RL cope with partial observability which is prevalent in many real-world problems. Contrary to contemporary RL approaches, which focus mostly on improved memory representations or strong assumptions about the type of partial observability, we propose a simple but efficient approach that can be applied together with a wide variety of RL methods. Our main insight is that smoothly transitioning from full observability to partial observability during the training process yields a high performance policy. The approach, called partially observable guided reinforcement learning (PO-GRL), allows to utilize full state information during policy optimization without compromising the optimality of the final policy. A comprehensive evaluation in discrete partially observableMarkov decision process (POMDP) benchmark problems and continuous partially observable MuJoCo and OpenAI gym tasks shows that PO-GRL improves performance. Finally, we demonstrate PO-GRL in the ball-in-the-cup task on a real Barrett WAM robot under partial observability.

قيم البحث

اقرأ أيضاً

Recent renewed interest in multi-agent reinforcement learning (MARL) has generated an impressive array of techniques that leverage deep reinforcement learning, primarily actor-critic architectures, and can be applied to a limited range of settings in terms of observability and communication. However, a continuing limitation of much of this work is the curse of dimensionality when it comes to representations based on joint actions, which grow exponentially with the number of agents. In this paper, we squarely focus on this challenge of scalability. We apply the key insight of action anonymity, which leads to permutation invariance of joint actions, to two recently presented deep MARL algorithms, MADDPG and IA2C, and compare these instantiations to another recent technique that leverages action anonymity, viz., mean-field MARL. We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method, using a recently introduced pragmatic domain.
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors by leveraging both reward feedback and a set of target task demonstrations. Prior approaches for demonstration-guided RL treat every new task as a n independent learning problem and attempt to follow the provided demonstrations step-by-step, akin to a human trying to imitate a completely unseen behavior by following the demonstrators exact muscle movements. Naturally, such learning will be slow, but often new behaviors are not completely unseen: they share subtasks with behaviors we have previously learned. In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL. We first learn a set of reusable skills from large offline datasets of prior experience collected across many tasks. We then propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations by following the demonstrated skills instead of the primitive actions, resulting in substantial performance improvements over prior demonstration-guided RL approaches. We validate the effectiveness of our approach on long-horizon maze navigation and complex robot manipulation tasks.
Many real-world tasks involve multiple agents with partial observability and limited communication. Learning is challenging in these settings due to local viewpoints of agents, which perceive the world as non-stationary due to concurrently-exploring teammates. Approaches that learn specialized policies for individual tasks face problems when applied to the real world: not only do agents have to learn and store distinct policies for each task, but in practice identities of tasks are often non-observable, making these approaches inapplicable. This paper formalizes and addresses the problem of multi-task multi-agent reinforcement learning under partial observability. We introduce a decentralized single-task learning approach that is robust to concurrent interactions of teammates, and present an approach for distilling single-task policies into a unified policy that performs well across multiple related tasks, without explicit provision of task identity.
Reinforcement Learning (RL) has made remarkable achievements, but it still suffers from inadequate exploration strategies, sparse reward signals, and deceptive reward functions. These problems motivate the need for a more efficient and directed explo ration. For solving this, a Population-guided Novelty Search (PNS) parallel learning method is proposed. In PNS, the population is divided into multiple sub-populations, each of which has one chief agent and several exploring agents. The role of the chief agent is to evaluate the policies learned by exploring agents and to share the optimal policy with all sub-populations. The role of exploring agents is to learn their policies in collaboration with the guidance of the optimal policy and, simultaneously, upload their policies to the chief agent. To balance exploration and exploitation, the Novelty Search (NS) is employed in chief agents to encourage policies with high novelty while maximizing per-episode performance. The introduction of sub-populations and NS mechanisms promote directed exploration and enables better policy search. In the numerical experiment section, the proposed scheme is applied to the twin delayed deep deterministic (TD3) policy gradient algorithm, and the effectiveness of PNS to promote exploration and improve performance in both continuous control domains and discrete control domains is demonstrated. Notably, the proposed method achieves rewards that far exceed the SOTA methods in Delayed MoJoCo environments.
Current deep reinforcement learning (RL) approaches incorporate minimal prior knowledge about the environment, limiting computational and sample efficiency. textit{Objects} provide a succinct and causal description of the world, and many recent works have proposed unsupervised object representation learning using priors and losses over static object properties like visual consistency. However, object dynamics and interactions are also critical cues for objectness. In this paper we propose a framework for reasoning about object dynamics and behavior to rapidly determine minimal and task-specific object representations. To demonstrate the need to reason over object behavior and dynamics, we introduce a suite of RGBD MuJoCo object collection and avoidance tasks that, while intuitive and visually simple, confound state-of-the-art unsupervised object representation learning algorithms. We also highlight the potential of this framework on several Atari games, using our object representation and standard RL and planning algorithms to learn dramatically faster than existing deep RL algorithms.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا