ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-phonon superconductivity in C-doped topological nodal-line semimetal Zr$_5$Pt$_3$: A muon spin rotation and relaxation ($mu$SR) study

117   0   0.0 ( 0 )
 نشر من قبل Amitava Bhattacharyya Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we demonstrate that C-doped Zr$_{5}$Pt$_{3}$ is an electron-phonon superconductor (with critical temperature T$_mathrm{C}$ = 3.7,K) with a nonsymmorphic topological Dirac nodal-line semimetal state, which we report here for the first time. The superconducting properties of Zr$_{5}$Pt$_{3}$C$_{0.5}$ have been investigated by means of magnetization and muon spin rotation and relaxation ($mu$SR) measurements. We find that at low temperatures the depolarization rate is almost constant and can be well described by a single-band $s-$wave model with a superconducting gap of $2Delta(0)/k_mathrm{B}T_mathrm{C}$ = 3.84, close to the value of BCS theory. From transverse field $mu$SR analysis we estimate the London penetration depth $lambda_{L}$ = 469 nm, superconducting carrier density $n_{s}$ = 2$times$10$^{26}$ $m^{-3}$, and effective mass m$^{*}$ = 1.584 $m_{e}$. Zero field $mu$SR confirms the absence of any spontaneous magnetic moment in the superconducting ground state. To gain additional insights into the electronic ground state of C-doped Zr$_5$Pt$_3$, we have also performed first-principles calculations within the framework of density functional theory (DFT). The observed homogenous electronic character of the Fermi surface as well as the mutual decrease of $T_mathrm{C}$ and density of states at the Fermi level are consistent with the experimental findings. However, the band structure reveals the presence of robust, gapless fourfold-degenarate nodal lines protected by $6_{3}$ screw rotations and glide mirror planes. Therefore, Zr$_5$Pt$_3$ represents a novel, unprecedented condensed matter system to investigate the intricate interplay between superconductivity and topology.

قيم البحث

اقرأ أيضاً

The physical properties of the Zr$_5$Pt$_3$ compound with interstitial carbon in hexagonal D8$_8$-structure was investigated. A set of macroscopic measurements reveal a bulk superconducting at approximately 7 K for Zr$_5$Pt$_3$C$_{0.3}$ close to Zr$_ 5$Pt$_3$, also with a correlate anomalous resistivity behavior. However, both the signatures of strong electron-electron interaction, and the electronic contribution to specific heat, increase dramatically with the C doping. For the first time the x-ray photoelectron spectra compared with DFT/PWLO calculations of electronic structure show a complex Fermi surface with high density of states for Zr$_5$Pt$_3$. Also results show the signature of unconventional superconductivity. Indeed, was observed an unusual behavior for lower and upper critical field diagrams of Zr$_5$Pt$_3$C$_{0.3}$. The temperature dependence of penetration length and electronic contribution to specific heat suggests that electronic pairing deviates of $s$-wave the BCS scenario.
380 - E. J. Cheng , W. Xia , X. B. Shi 2019
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor.
NaAlSi is an sp electron superconductor crystallizing in a layered structure of the anti-PbFCl type with a relatively high transition temperature Tc of ~7 K. Recent electronic state calculations revealed the presence of topological nodal lines in the semimetallic band structure, which attracted much attention owing to the superconductivity. However, experimental investigation remained limited because of the lack of single crystals. Here, we successfully prepared single crystals of NaAlSi by a Na-Ga flux method and characterized their superconducting and normal-state properties through electrical resistivity, magnetization, and heat capacity measurements. A sharp superconducting transition with a Tc of 6.8 K is clearly observed, and heat capacity data suggest an anisotropic superconducting gap. Surprisingly, despite the sp electron system, the normal state is governed by the electron correlations, which is indicated by a T2 resistivity and a Wilson ratio of 2.0. The origin of the electron correlation may be related to the orthogonal saddle-shaped Fermi surfaces derived from the Si px and py states, which intersect with the light Al s bands to form the nodal lines near the Fermi level. These results strongly suggest that the superconductivity of NaAlSi is not caused by a simple phonon mechanism but involves a certain unconventional aspect, although its relevance to the nodal lines is unclear.
We report muon spin relaxation and rotation ($mu$SR) measurements on hydrothermally-grown single crystals of the tetragonal superconductor~FeS, which help to clarify the controversial magnetic state and superconducting gap symmetry of this compound. $mu$SR time spectra were obtained from 280~K down to 0.025~K in zero field (ZF) and applied fields up to 20 mT. In ZF the observed loss of initial asymmetry (signal amplitude) and increase of depolarization rate~$Lambda_mathrm{ZF}$ below 10~K indicate the onset of static magnetism, which coexists with superconductivity below $T_c$. Transverse-field $mu$SR yields a muon depolarization rate $sigma_mathrm{sc} propto lambda_{ab}^{-2}$ that clearly shows a linear dependence at low temperature, consistent with nodal superconductivity. The $s{+}d$-wave model gives the best fit to the observed temperature and field dependencies. The normalized superfluid densities versus normalized temperature for different fields collapse onto the same curve, indicating the superconducting gap structure is independent of field. The $T=0$ in-plane penetration depth $lambda_{ab}$(0) = 198(3) nm.
Coexistence of topological bands and charge density wave (CDW) in topological materials has attracted immense attentions because of their fantastic properties, such as axionic-CDW, three-dimensional quantum Hall effect, etc. In this work, a nodal-lin e semimetal InxTaS2 characterized by CDW and superconductivity is successfully synthesized, whose structure and topological bands (two separated Wely rings) are similar to In0.58TaSe2. A 2 x 2 commensurate CDW is observed at low temperature in InxTaS2, identified by transport properties and STM measurements. Moreover, superconductivity emerges below 0.69 K, and the anisotropy ratio of upper critical field [Gamma = H||ab c2(0)=H||c c2(0)] is significantly enhanced compared to 2H-TaS2, which shares the same essential layer unit. According to the Lawrence-Doniach model, the enhanced Gamma may be explained by the reduced effective mass in kx-ky plane, where Weyl rings locate. Therefore, this type of layered topological systems may offer a platform to investigate highly anisotropic superconductivity and to understand the extremely large upper critical field in the bulk or in the two-dimensional limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا