ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible two-component spin-singlet pairings in Sr2RuO4

247   0   0.0 ( 0 )
 نشر من قبل Da Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments suggest a multi-component pairing function in Sr2RuO4, which appears to be inconsistent with the absence of an apparent cusp in the transition temperature (Tc) as a function of the uniaxial strain. We show, however, that the theoretical cusp in Tc for a multi-component pairing can be easily smeared out by the spatial inhomogeneity of strain, and the experimental data can be reproduced qualitatively by a percolation model. This shed new light on multi-component pairings. We then perform a thorough group-theoretical classification of the pairing functions, taking the spin-orbit coupling into account. We list all 13 types of two-component spin-singlet pairing functions, with 8 of them belonging to the Eg representation. In particular, we find two types of intra-orbital pairings in the Eg representation ($k_xk_z$, $k_yk_z$) are favorable in view of most existing experiments.

قيم البحث

اقرأ أيضاً

55 - Lei Hao , C. S. Ting 2018
Recent experiments show the spontaneous breaking of rotational symmetry in the superconducting topological insulators M$_{x}$Bi$_{2}$Se$_{3}$ (M represents Cu, Sr, or Nd), suggesting that the pairing belongs to a two-dimensional representation of the $D_{3d}$ symmetry group of the crystal. Motivated by these progresses, we construct an exhaustive list of possible two-component pairings of the M$_{x}$Bi$_{2}$Se$_{3}$ superconductors, both for the odd-parity $E_{u}$ representation and for the even-parity $E_{g}$ representation. Starting from a tight-binding model for the normal phase of Bi$_{2}$Se$_{3}$ and M$_{x}$Bi$_{2}$Se$_{3}$, we firstly construct the pairing channels in the spin-orbital basis, up to second-nearest-neighbor pairing correlations in the basal plane. We then infer the properties of these pairings by transforming them to the band (pseudospin) basis for the conduction band. A comparison with the key experimental consensuses on M$_{x}$Bi$_{2}$Se$_{3}$ superconductors shows that the true pairings should also be multichannel. Besides a nematic and time-reversal symmetric pairing combination, the other pairings that we have identified are chiral and nematic at the same time, which may be nonunitary and have a spontaneous magnetization. A complementary set of experiments are proposed to identify the true pairing symmetries of these superconductors and their evolution with the doping concentration $x$.
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0. 28 meV, which disappears at T$_c$ = 1.5 K. $Delta$ is close to the result expected from weak coupling BCS theory ($Delta_0$=1.76kBT$_c$ = 0.229 meV). Odd parity superconductivity is associated with a fully isotropic gap without nodes over a significant part of the Fermi surface.
This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie and Maeno was published in 2003. Here, special focus is placed on the critical evaluation of the spin-triplet, odd-parity pairing scenario applied to Sr2RuO4. After an introduction to superconductors with possible odd-parity pairing, accumulated evidence for the pairing symmetry of Sr2RuO4 is examined. Then, significant recent progress on the theoretical approaches to the superconducting pairing by Coulomb repulsion is reviewed. A section is devoted to some experimental properties of Sr2RuO4 that seem to defy simple explanations in terms of currently available spin-triplet scenario. The next section deals with some new developments using eutectic boundaries and micro-crystals, which reveals novel superconducting phenomena related to chiral edge states, odd-frequency pairing states, and half-fluxoid states. Some of these properties are intimately connected with the properties as a topological superconductor. The article concludes with a summary of knowledge emerged from the study of Sr2RuO4 that are now more widely applied to understand the physics of other unconventional superconductors, as well as with a brief discussion of relatively unexplored but promising areas of ongoing and future studies of Sr2RuO4.
We present precise measurements of the upper critical field (Hc2) in the recently discovered cobalt oxide superconductor. We have found that the critical field has an unusual temperature dependence; namely, there is an abrupt change of the slope of H c2(T) in a weak field regime. In order to explain this result we have derived and solved Gorkov equations on a triangular lattice. Our experimental results may be interpreted in terms of the field-induced transition from singlet to triplet superconductivity.
We investigate the phase diagram in the plane of temperature and chemical potential mismatch for an asymmetric fermion superfluid with double- and single-species pairings. There is no mixing of these two types of pairings at fixed chemical potential, but the introduction of the single species pairing cures the magnetic instability at low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا