ﻻ يوجد ملخص باللغة العربية
This paper presents the PALI teams winning system for SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation. We fine-tune XLM-RoBERTa model to solve the task of word in context disambiguation, i.e., to determine whether the target word in the two contexts contains the same meaning or not. In the implementation, we first specifically design an input tag to emphasize the target word in the contexts. Second, we construct a new vector on the fine-tuned embeddings from XLM-RoBERTa and feed it to a fully-connected network to output the probability of whether the target word in the context has the same meaning or not. The new vector is attained by concatenating the embedding of the [CLS] token and the embeddings of the target word in the contexts. In training, we explore several tricks, such as the Ranger optimizer, data augmentation, and adversarial training, to improve the model prediction. Consequently, we attain first place in all four cross-lingual tasks.
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisati
Question answering from semi-structured tables can be seen as a semantic parsing task and is significant and practical for pushing the boundary of natural language understanding. Existing research mainly focuses on understanding contents from unstruc
This paper describes the winning contribution to SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection (Subtask 2) handed in by team UG Student Intern. We present an ensemble model that makes predictions based on context-free and contex
Eye movement data during reading is a useful source of information for understanding language comprehension processes. In this paper, we describe our submission to the CMCL 2021 shared task on predicting human reading patterns. Our model uses RoBERTa
We describe SemEval-2021 task 6 on Detection of Persuasion Techniques in Texts and Images: the data, the annotation guidelines, the evaluation setup, the results, and the participating systems. The task focused on memes and had three subtasks: (i) de