ﻻ يوجد ملخص باللغة العربية
This paper develops a reinforcement learning (RL) scheme for adaptive traffic signal control (ATSC), called CVLight, that leverages data collected only from connected vehicles (CV). Seven types of RL models are proposed within this scheme that contain various state and reward representations, including incorporation of CV delay and green light duration into state and the usage of CV delay as reward. To further incorporate information of both CV and non-CV into CVLight, an algorithm based on actor-critic, A2C-Full, is proposed where both CV and non-CV information is used to train the critic network, while only CV information is used to update the policy network and execute optimal signal timing. These models are compared at an isolated intersection under various CV market penetration rates. A full model with the best performance (i.e., minimum average travel delay per vehicle) is then selected and applied to compare with state-of-the-art benchmarks under different levels of traffic demands, turning proportions, and dynamic traffic demands, respectively. Two case studies are performed on an isolated intersection and a corridor with three consecutive intersections located in Manhattan, New York, to further demonstrate the effectiveness of the proposed algorithm under real-world scenarios. Compared to other baseline models that use all vehicle information, the trained CVLight agent can efficiently control multiple intersections solely based on CV data and can achieve a similar or even greater performance when the CV penetration rate is no less than 20%.
This paper presents the results of a new deep learning model for traffic signal control. In this model, a novel state space approach is proposed to capture the main attributes of the control environment and the underlying temporal traffic movement pa
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networ
Stop-and-go traffic poses many challenges to tranportation system, but its formation and mechanism are still under exploration.however, it has been proved that by introducing Connected Automated Vehicles(CAVs) with carefully designed controllers one
Reinforcement learning (RL) constitutes a promising solution for alleviating the problem of traffic congestion. In particular, deep RL algorithms have been shown to produce adaptive traffic signal controllers that outperform conventional systems. How
This paper proposes a reinforcement learning approach for traffic control with the adaptive horizon. To build the controller for the traffic network, a Q-learning-based strategy that controls the green light passing time at the network intersections