ترغب بنشر مسار تعليمي؟ اضغط هنا

Gauged Lepton Number, Dirac Neutrinos, Dark Matter, and Muon $g-2$

78   0   0.0 ( 0 )
 نشر من قبل Ernest Ma
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Ernest Ma




اسأل ChatGPT حول البحث

Lepton number is promoted to an $U(1)_L$ gauge symmetry in a simple extension of the standard model. The spontaneous breaking of $U(1)_L$ by three units allows a conserved $Z_3^L$ lepton symmetry to remain, guaranteeing that neutrinos are Dirac fermions, which acquire naturally small masses from a previously proposed mechanism. Dark matter appears as a singlet scalar, with dark symmetry $Z_3^D$ derivable from $Z_3^L$. Muon $g-2$ may be explained.



قيم البحث

اقرأ أيضاً

In this paper, we summarize phenomenology in lepton portal dark matter (DM) models, where DM couples to leptons and extra leptons/sleptons. There are several possible setups: complex/real scalar DM and Dirac/Majorana fermion DM. In addition, there ar e choices for the lepton chirality that couples to DM. We discuss the prediction of each model and compare it with the latest experimental constraints from the DM, the LHC, and the flavor experiments. We also propose a simple setup to achieve the discrepancy in the anomalous magnetic moment of muon.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
Gauged $U(1)_{L_mu - L_tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three r ight-handed neutrinos $(N_e, N_mu, N_tau)$ and a vector-like singlet fermion $(chi)$ to explain simultaneously the non-zero neutrino mass and dark matter content of the Universe, while satisfying anomalous muon $g-2$ constraints. It is shown that in a large parameter space of this model we can explain positron excess, observed at PAMELA, Fermi-LAT and AMS-02, through dark matter annihilation, while satisfying the relic density and direct detection constraints.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For t he general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
We demonstrate that the recent measurement of the anomalous magnetic moment of the muon and dark matter can be simultaneously explained within the Minimal Supersymmetric Standard Model. Dark matter is a mostly-bino state, with the relic abundance obt ained via co-annihilations with either the sleptons or wino. The most interesting regions of parameter space will be tested by the next generation of dark matter direct detection experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا