ﻻ يوجد ملخص باللغة العربية
Gauged $U(1)_{L_mu - L_tau}$ model has been advocated for a long time in light of muon $g-2$ anomaly, which is a more than $3sigma$ discrepancy between the experimental measurement and the standard model prediction. We augment this model with three right-handed neutrinos $(N_e, N_mu, N_tau)$ and a vector-like singlet fermion $(chi)$ to explain simultaneously the non-zero neutrino mass and dark matter content of the Universe, while satisfying anomalous muon $g-2$ constraints. It is shown that in a large parameter space of this model we can explain positron excess, observed at PAMELA, Fermi-LAT and AMS-02, through dark matter annihilation, while satisfying the relic density and direct detection constraints.
We consider right-handed neutrino dark matter $N_1$ in local $U(1)_{L_mu-L_tau}$-extended Ma model. With the light $U(1)_{mu-tau}$ gauge boson ($m_{Z} sim {cal O}(100)$ MeV) and small $U(1)_{mu-tau}$ gauge coupling ($g_{Z}sim 10^{-4}-10^{-3}$) which
As experimental null results increase the pressure on heavy weakly interacting massive particles (WIMPs) as an explanation of thermal dark matter (DM), it seems timely to explore previously overlooked regions of the WIMP parameter space. In this work
We consider a gauged $U(1)_{L_mu-L_tau}$ extension of the left-right symmetric theory in order to simultaneously explain neutrino mass, mixing and the muon anomalous magnetic moment. We get sizeable contribution from the interaction of the new light
We study the gauged $U(1)_{L_mu-L_tau}$ scotogenic model with emphasis on latest measurement of LHCb $R_{K^{(*)}}$ anomaly and AMS-02 positron excess. In this model, neutrino masses are induced at one-loop level with $Z_2$-odd particles, i.e., right-
Models of gauged $U(1)_{L_mu-L_tau}$ can provide a solution to the long-standing discrepancy between the theoretical prediction for the muon anomalous magnetic moment and its measured value. The extra contribution is due to a new light vector mediato