ﻻ يوجد ملخص باللغة العربية
We resolve the fate of the two original apparent horizons during the head-on merger of two non-spinning black holes, showing that these horizons exist for a finite amount of time before they individually turn around and move backward in time. This completes the understanding of the pair of pants diagram for the apparent horizon. Our result is facilitated by a new method for locating marginally outer trapped surfaces (MOTSs) based on a generalized shooting method. We also discuss the role played by the MOTS stability operator in discerning which among a multitude of MOTSs should be considered as black hole boundaries.
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion
The well known connection between black holes and thermodynamics, as well as their basic statistical mechanics, has been explored during the last decades since the published papers by Hawking, Jacobson and Unruh. In this work we have investigated the
A lamination of a graph embedded on a surface is a collection of pairwise disjoint non-contractible simple closed curves drawn on the graph. In the case when the surface is a sphere with three punctures (a.k.a. a pair of pants), we first identify the
Using tropical geometry, Mikhalkin has proved that every smooth complex hypersurface in $mathbb{CP}^{n+1}$ decomposes into pairs of pants: a pair of pants is a real compact $2n$-manifold with cornered boundary obtained by removing an open regular nei
There is a compelling connection between equations of gravity near the black-hole horizon and fluid-equations. The correspondence suggests a novel way to unearth microscopic degrees of freedom of the event horizons. In this work, we construct a micro