ﻻ يوجد ملخص باللغة العربية
We propose a method for estimating high-definition spatially-varying lighting, reflectance, and geometry of a scene from 360$^{circ}$ stereo images. Our model takes advantage of the 360$^{circ}$ input to observe the entire scene with geometric detail, then jointly estimates the scenes properties with physical constraints. We first reconstruct a near-field environment light for predicting the lighting at any 3D location within the scene. Then we present a deep learning model that leverages the stereo information to infer the reflectance and surface normal. Lastly, we incorporate the physical constraints between lighting and geometry to refine the reflectance of the scene. Both quantitative and qualitative experiments show that our method, benefiting from the 360$^{circ}$ observation of the scene, outperforms prior state-of-the-art methods and enables more augmented reality applications such as mirror-objects insertion.
Recently, end-to-end trainable deep neural networks have significantly improved stereo depth estimation for perspective images. However, 360{deg} images captured under equirectangular projection cannot benefit from directly adopting existing methods
We present SOLID-Net, a neural network for spatially-varying outdoor lighting estimation from a single outdoor image for any 2D pixel location. Previous work has used a unified sky environment map to represent outdoor lighting. Instead, we generate s
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object from a sparse set of only six images captured by wide-baseline cameras under collocated point lighting. We
We present a method to estimate lighting from a single image of an indoor scene. Previous work has used an environment map representation that does not account for the localized nature of indoor lighting. Instead, we represent lighting as a set of di
We tackle the problem of estimating flow between two images with large lighting variations. Recent learning-based flow estimation frameworks have shown remarkable performance on image pairs with small displacement and constant illuminations, but cann