ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially-Varying Outdoor Lighting Estimation from Intrinsics

86   0   0.0 ( 0 )
 نشر من قبل Yongjie Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present SOLID-Net, a neural network for spatially-varying outdoor lighting estimation from a single outdoor image for any 2D pixel location. Previous work has used a unified sky environment map to represent outdoor lighting. Instead, we generate spatially-varying local lighting environment maps by combining global sky environment map with warped image information according to geometric information estimated from intrinsics. As no outdoor dataset with image and local lighting ground truth is readily available, we introduce the SOLID-Img dataset with physically-based rendered images and their corresponding intrinsic and lighting information. We train a deep neural network to regress intrinsic cues with physically-based constraints and use them to conduct global and local lightings estimation. Experiments on both synthetic and real datasets show that SOLID-Net significantly outperforms previous methods.



قيم البحث

اقرأ أيضاً

We propose a real-time method to estimate spatiallyvarying indoor lighting from a single RGB image. Given an image and a 2D location in that image, our CNN estimates a 5th order spherical harmonic representation of the lighting at the given location in less than 20ms on a laptop mobile graphics card. While existing approaches estimate a single, global lighting representation or require depth as input, our method reasons about local lighting without requiring any geometry information. We demonstrate, through quantitative experiments including a user study, that our results achieve lower lighting estimation errors and are preferred by users over the state-of-the-art. Our approach can be used directly for augmented reality applications, where a virtual object is relit realistically at any position in the scene in real-time.
We present a neural network that predicts HDR outdoor illumination from a single LDR image. At the heart of our work is a method to accurately learn HDR lighting from LDR panoramas under any weather condition. We achieve this by training another CNN (on a combination of synthetic and real images) to take as input an LDR panorama, and regress the parameters of the Lalonde-Matthews outdoor illumination model. This model is trained such that it a) reconstructs the appearance of the sky, and b) renders the appearance of objects lit by this illumination. We use this network to label a large-scale dataset of LDR panoramas with lighting parameters and use them to train our single image outdoor lighting estimation network. We demonstrate, via extensive experiments, that both our panorama and single image networks outperform the state of the art, and unlike prior work, are able to handle weather conditions ranging from fully sunny to overcast skies.
We propose a data-driven learned sky model, which we use for outdoor lighting estimation from a single image. As no large-scale dataset of images and their corresponding ground truth illumination is readily available, we use complementary datasets to train our approach, combining the vast diversity of illumination conditions of SUN360 with the radiometrically calibrated and physically accurate Laval HDR sky database. Our key contribution is to provide a holistic view of both lighting modeling and estimation, solving both problems end-to-end. From a test image, our method can directly estimate an HDR environment map of the lighting without relying on analytical lighting models. We demonstrate the versatility and expressivity of our learned sky model and show that it can be used to recover plausible illumination, leading to visually pleasant virtual object insertions. To further evaluate our method, we capture a dataset of HDR 360{deg} panoramas and show through extensive validation that we significantly outperform previous state-of-the-art.
In this work, we address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image. Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene. However, indoor scenes contain complex 3D light transport where a 2D representation is insufficient. In this paper, we propose a unified, learning-based inverse rendering framework that formulates 3D spatially-varying lighting. Inspired by classic volume rendering techniques, we propose a novel Volumetric Spherical Gaussian representation for lighting, which parameterizes the exitant radiance of the 3D scene surfaces on a voxel grid. We design a physics based differentiable renderer that utilizes our 3D lighting representation, and formulates the energy-conserving image formation process that enables joint training of all intrinsic properties with the re-rendering constraint. Our model ensures physically correct predictions and avoids the need for ground-truth HDR lighting which is not easily accessible. Experiments show that our method outperforms prior works both quantitatively and qualitatively, and is capable of producing photorealistic results for AR applications such as virtual object insertion even for highly specular objects.
We propose a deep inverse rendering framework for indoor scenes. From a single RGB image of an arbitrary indoor scene, we create a complete scene reconstruction, estimating shape, spatially-varying lighting, and spatially-varying, non-Lambertian surf ace reflectance. To train this network, we augment the SUNCG indoor scene dataset with real-world materials and render them with a fast, high-quality, physically-based GPU renderer to create a large-scale, photorealistic indoor dataset. Our inverse rendering network incorporates physical insights -- including a spatially-varying spherical Gaussian lighting representation, a differentiable rendering layer to model scene appearance, a cascade structure to iteratively refine the predictions and a bilateral solver for refinement -- allowing us to jointly reason about shape, lighting, and reflectance. Experiments show that our framework outperforms previous methods for estimating individual scene components, which also enables various novel applications for augmented reality, such as photorealistic object insertion and material editing. Code and data will be made publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا