ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) magnetic materials with strong magnetostriction, like Cr$_2$Ge$_2$Te$_6$ (CGT), provide opportunities for tuning their magnetic state with potential applications in spintronic and magneto-mechanical devices. However, realizing this potential requires understanding their mechanical properties, such as the Youngs modulus, and the ability to controllably strain the magnets and monitor their ferromagnetic Curie temperature $T_{rm C}$ on a device level. In this work, we suspend thin CGT layers to form nanomechanical membrane resonators. We then probe the mechanical and magnetic properties of CGT as a function of temperature and strain by static and dynamic nanomechanical methods. Pronounced signatures of magneto-elastic coupling are observed in the temperature-dependent resonance frequency of these membranes at the $T_{rm C}$. We further utilize CGT in heterostructures with thin WSe$_2$ and FePS$_3$ layers to control the strain in CGT flakes and quantitatively probe the transition temperatures of all materials involved. In addition, an enhancement of $T_{rm C}$ by $2.5pm0.6$ K in CGT is realized by electrostatic force straining the heterostructure of $0.016%$ in the absence of an external magnetic field. Nanomechanical strain thus offers a compelling degree of freedom to probe and control magnetic phase transitions in 2D layered ferromagnets and heterostructures.
Electrical control of magnetism of a ferromagnetic semiconductor offers exciting prospects for future spintronic devices for processing and storing information. Here, we report observation of electrically modulated magnetic phase transition and magne
We study the magnetisation dynamics of a bulk single crystal Cr$_2$Ge$_2$Te$_6$ (CGT), by means of broadband ferromagnetic resonance (FMR), for temperatures from 60 K down to 2 K. We determine the Kittel relations of the fundamental FMR mode as a fun
Graphene sandwiched between semiconducting monolayers of ferromagnet Cr$_2$Ge$_2$Te$_6$ and transition-metal dichalcogenide WS$_2$ acquires both spin-orbit (SO), of valley-Zeeman and Rashba types, and exchange couplings. Using first-principles combin
Full experimental control of local spin-charge interconversion is of primary interest for spintronics. Heterostructures combining graphene with a strongly spin-orbit coupled two-dimensional (2D) material enable such functionality by design. Electric
The van der Waals ferromagnet Cr$_2$Ge$_2$Te$_6$ (CGT) has a two-dimensional crystal structure where each layer is stacked through van der Waals force. We have investigated the nature of the ferromagnetism and the weak perpendicular magnetic anisotro