ترغب بنشر مسار تعليمي؟ اضغط هنا

TREC Deep Learning Track: Reusable Test Collections in the Large Data Regime

92   0   0.0 ( 0 )
 نشر من قبل Bhaskar Mitra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This paper supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.

قيم البحث

اقرأ أيضاً

This is the second year of the TREC Deep Learning Track, with the goal of studying ad hoc ranking in the large training data regime. We again have a document retrieval task and a passage retrieval task, each with hundreds of thousands of human-labele d training queries. We evaluate using single-shot TREC-style evaluation, to give us a picture of which ranking methods work best when large data is available, with much more comprehensive relevance labeling on the small number of test queries. This year we have further evidence that rankers with BERT-style pretraining outperform other rankers in the large data regime.
The Deep Learning Track is a new track for TREC 2019, with the goal of studying ad hoc ranking in a large data regime. It is the first track with large human-labeled training sets, introducing two sets corresponding to two tasks, each with rigorous T REC-style blind evaluation and reusable test sets. The document retrieval task has a corpus of 3.2 million documents with 367 thousand training queries, for which we generate a reusable test set of 43 queries. The passage retrieval task has a corpus of 8.8 million passages with 503 thousand training queries, for which we generate a reusable test set of 43 queries. This year 15 groups submitted a total of 75 runs, using various combinations of deep learning, transfer learning and traditional IR ranking methods. Deep learning runs significantly outperformed traditional IR runs. Possible explanations for this result are that we introduced large training data and we included deep models trained on such data in our judging pools, whereas some past studies did not have such training data or pooling.
We benchmark Conformer-Kernel models under the strict blind evaluation setting of the TREC 2020 Deep Learning track. In particular, we study the impact of incorporating: (i) Explicit term matching to complement matching based on learned representatio ns (i.e., the Duet principle), (ii) query term independence (i.e., the QTI assumption) to scale the model to the full retrieval setting, and (iii) the ORCAS click data as an additional document description field. We find evidence which supports that all three aforementioned strategies can lead to improved retrieval quality.
Evaluation efforts such as TREC, CLEF, NTCIR and FIRE, alongside public leaderboard such as MS MARCO, are intended to encourage research and track our progress, addressing big questions in our field. However, the goal is not simply to identify which run is best, achieving the top score. The goal is to move the field forward by developing new robust techniques, that work in many different settings, and are adopted in research and practice. This paper uses the MS MARCO and TREC Deep Learning Track as our case study, comparing it to the case of TREC ad hoc ranking in the 1990s. We show how the design of the evaluation effort can encourage or discourage certain outcomes, and raising questions about internal and external validity of results. We provide some analysis of certain pitfalls, and a statement of best practices for avoiding such pitfalls. We summarize the progress of the effort so far, and describe our desired end state of robust usefulness, along with steps that might be required to get us there.
The Podcast Track is new at the Text Retrieval Conference (TREC) in 2020. The podcast track was designed to encourage research into podcasts in the information retrieval and NLP research communities. The track consisted of two shared tasks: segment r etrieval and summarization, both based on a dataset of over 100,000 podcast episodes (metadata, audio, and automatic transcripts) which was released concurrently with the track. The track generated considerable interest, attracted hundreds of new registrations to TREC and fifteen teams, mostly disjoint between search and summarization, made final submissions for assessment. Deep learning was the dominant experimental approach for both search experiments and summarization. This paper gives an overview of the tasks and the results of the participants experiments. The track will return to TREC 2021 with the same two tasks, incorporating slight modifications in response to participant feedback.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا