ﻻ يوجد ملخص باللغة العربية
Narrowband single photons that couple well to atomic ensembles could prove essential for future quantum networks, but the efficient generation of such photons remains an outstanding challenge. We realize a spatially-multiplexed heralded source of single photons that are inherently compatible with the commonly employed D2 line of rubidium. Our source is based on four-wave mixing in hot rubidium vapor, requiring no laser cooling or optical cavities, and generates single photons with high rate and low noise. We use Hong-Ou-Mandel interference to verify the indistinguishability of the photons generated in two different (multiplexed) channels. We further demonstrate a five-fold tunability of the photons temporal width. The experimental results are well reproduced by a theoretical model.
Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to activel
Using the process of spontaneous parametric down conversion in a novel two-crystal geometry, one can generate a source of polarization-entangled photon pairs which is orders of magnitude brighter than previous sources. We have measured a high level o
Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-st
A key resource for quantum optics experiments is an on-demand source of single and multiple photon states at telecommunication wavelengths. This letter presents a heralded single photon source based on a hybrid technology approach, combining high eff
Scalable photonic quantum technologies require highly efficient sources of single photons on demand. Although much progress has been done in the field within the last decade, the requirements impose stringent conditions on the efficiency of such devi