ﻻ يوجد ملخص باللغة العربية
Nowadays, users are encouraged to activate across multiple online social networks simultaneously. Anchor link prediction, which aims to reveal the correspondence among different accounts of the same user across networks, has been regarded as a fundamental problem for user profiling, marketing, cybersecurity, and recommendation. Existing methods mainly address the prediction problem by utilizing profile, content, or structural features of users in symmetric ways. However, encouraged by online services, users would also post asymmetric information across networks, such as geo-locations and texts. It leads to an emerged challenge in aligning users with asymmetric information across networks. Instead of similarity evaluation applied in previous works, we formalize correlation between geo-locations and texts and propose a novel anchor link prediction framework for matching users across networks. Moreover, our model can alleviate the label scarcity problem by introducing external data. Experimental results on real-world datasets show that our approach outperforms existing methods and achieves state-of-the-art results.
Identity fraud detection is of great importance in many real-world scenarios such as the financial industry. However, few studies addressed this problem before. In this paper, we focus on identity fraud detection in loan applications and propose to s
We propose an image representation and matching approach that substantially improves visual-based location estimation for images. The main novelty of the approach, called distinctive visual element matching (DVEM), is its use of representations that
The ACM A.M. Turing Award is commonly acknowledged as the highest distinction in the realm of computer science. Since 1960s, it has been awarded to computer scientists who made outstanding contributions. The significance of this award is far-reaching
Nodes in networks may have one or more functions that determine their role in the system. As opposed to local proximity, which captures the local context of nodes, the role identity captures the functional role that nodes play in a network, such as b
Localized Narratives is a dataset with detailed natural language descriptions of images paired with mouse traces that provide a sparse, fine-grained visual grounding for phrases. We propose TReCS, a sequential model that exploits this grounding to ge