ترغب بنشر مسار تعليمي؟ اضغط هنا

Surrogate Gradient Field for Latent Space Manipulation

99   0   0.0 ( 0 )
 نشر من قبل Minjun Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative adversarial networks (GANs) can generate high-quality images from sampled latent codes. Recent works attempt to edit an image by manipulating its underlying latent code, but rarely go beyond the basic task of attribute adjustment. We propose the first method that enables manipulation with multidimensional condition such as keypoints and captions. Specifically, we design an algorithm that searches for a new latent code that satisfies the target condition based on the Surrogate Gradient Field (SGF) induced by an auxiliary mapping network. For quantitative comparison, we propose a metric to evaluate the disentanglement of manipulation methods. Thorough experimental analysis on the facial attribute adjustment task shows that our method outperforms state-of-the-art methods in disentanglement. We further apply our method to tasks of various condition modalities to demonstrate that our method can alter complex image properties such as keypoints and captions.

قيم البحث

اقرأ أيضاً

Fine-grained facial expression manipulation is a challenging problem, as fine-grained expression details are difficult to be captured. Most existing expression manipulation methods resort to discrete expression labels, which mainly edit global expres sions and ignore the manipulation of fine details. To tackle this limitation, we propose an end-to-end expression-guided generative adversarial network (EGGAN), which utilizes structured latent codes and continuous expression labels as input to generate images with expected expressions. Specifically, we adopt an adversarial autoencoder to map a source image into a structured latent space. Then, given the source latent code and the target expression label, we employ a conditional GAN to generate a new image with the target expression. Moreover, we introduce a perceptual loss and a multi-scale structural similarity loss to preserve identity and global shape during generation. Extensive experiments show that our method can manipulate fine-grained expressions, and generate continuous intermediate expressions between source and target expressions.
We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Ou r method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.
Given data, deep generative models, such as variational autoencoders (VAE) and generative adversarial networks (GAN), train a lower dimensional latent representation of the data space. The linear Euclidean geometry of data space pulls back to a nonli near Riemannian geometry on the latent space. The latent space thus provides a low-dimensional nonlinear representation of data and classical linear statistical techniques are no longer applicable. In this paper we show how statistics of data in their latent space representation can be performed using techniques from the field of nonlinear manifold statistics. Nonlinear manifold statistics provide generalizations of Euclidean statistical notions including means, principal component analysis, and maximum likelihood fits of parametric probability distributions. We develop new techniques for maximum likelihood inference in latent space, and adress the computational complexity of using geometric algorithms with high-dimensional data by training a separate neural network to approximate the Riemannian metric and cometric tensor capturing the shape of the learned data manifold.
We present a framework for visual action planning of complex manipulation tasks with high-dimensional state spaces such as manipulation of deformable objects. Planning is performed in a low-dimensional latent state space that embeds images. We define and implement a Latent Space Roadmap (LSR) which is a graph-based structure that globally captures the latent system dynamics. Our framework consists of two main components: a Visual Foresight Module (VFM) that generates a visual plan as a sequence of images, and an Action Proposal Network (APN) that predicts the actions between them. We show the effectiveness of the method on a simulated box stacking task as well as a T-shirt folding task performed with a real robot.
Facial attributes in StyleGAN generated images are entangled in the latent space which makes it very difficult to independently control a specific attribute without affecting the others. Supervised attribute editing requires annotated training data w hich is difficult to obtain and limits the editable attributes to those with labels. Therefore, unsupervised attribute editing in an disentangled latent space is key to performing neat and versatile semantic face editing. In this paper, we present a new technique termed Structure-Texture Independent Architecture with Weight Decomposition and Orthogonal Regularization (STIA-WO) to disentangle the latent space for unsupervised semantic face editing. By applying STIA-WO to GAN, we have developed a StyleGAN termed STGAN-WO which performs weight decomposition through utilizing the style vector to construct a fully controllable weight matrix to regulate image synthesis, and employs orthogonal regularization to ensure each entry of the style vector only controls one independent feature matrix. To further disentangle the facial attributes, STGAN-WO introduces a structure-texture independent architecture which utilizes two independently and identically distributed (i.i.d.) latent vectors to control the synthesis of the texture and structure components in a disentangled way. Unsupervised semantic editing is achieved by moving the latent code in the coarse layers along its orthogonal directions to change texture related attributes or changing the latent code in the fine layers to manipulate structure related ones. We present experimental results which show that our new STGAN-WO can achieve better attribute editing than state of the art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا