ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Networks in Orthodontics: a review

250   0   0.0 ( 0 )
 نشر من قبل Szymon P{\\l}otka
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNNs) are used in many areas of computer vision, such as object tracking and recognition, security, military, and biomedical image analysis. This review presents the application of convolutional neural networks in one of the fields of dentistry - orthodontics. Advances in medical imaging technologies and methods allow CNNs to be used in orthodontics to shorten the planning time of orthodontic treatment, including an automatic search of landmarks on cephalometric X-ray images, tooth segmentation on Cone-Beam Computed Tomography (CBCT) images or digital models, and classification of defects on X-Ray panoramic images. In this work, we describe the current methods, the architectures of deep convolutional neural networks used, and their implementations, together with a comparison of the results achieved by them. The promising results and visualizations of the described studies show that the use of methods based on convolutional neural networks allows for the improvement of computer-based orthodontic treatment planning, both by reducing the examination time and, in many cases, by performing the analysis much more accurately than a manual orthodontist does.

قيم البحث

اقرأ أيضاً

312 - Anadi Chaman 2020
Thanks to the use of convolution and pooling layers, convolutional neural networks were for a long time thought to be shift-invariant. However, recent works have shown that the output of a CNN can change significantly with small shifts in input: a pr oblem caused by the presence of downsampling (stride) layers. The existing solutions rely either on data augmentation or on anti-aliasing, both of which have limitations and neither of which enables perfect shift invariance. Additionally, the gains obtained from these methods do not extend to image patterns not seen during training. To address these challenges, we propose adaptive polyphase sampling (APS), a simple sub-sampling scheme that allows convolutional neural networks to achieve 100% consistency in classification performance under shifts, without any loss in accuracy. With APS, the networks exhibit perfect consistency to shifts even before training, making it the first approach that makes convolutional neural networks truly shift-invariant.
Standard convolutional neural networks assume a grid structured input is available and exploit discrete convolutions as their fundamental building blocks. This limits their applicability to many real-world applications. In this paper we propose Param etric Continuous Convolution, a new learnable operator that operates over non-grid structured data. The key idea is to exploit parameterized kernel functions that span the full continuous vector space. This generalization allows us to learn over arbitrary data structures as long as their support relationship is computable. Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes, and lidar motion estimation of driving scenes.
With the increasing popularity of deep learning, Convolutional Neural Networks (CNNs) have been widely applied in various domains, such as image classification and object detection, and achieve stunning success in terms of their high accuracy over th e traditional statistical methods. To exploit the potential of CNN models, a huge amount of research and industry efforts have been devoted to optimizing CNNs. Among these endeavors, CNN architecture design has attracted tremendous attention because of its great potential of improving model accuracy or reducing model complexity. However, existing work either introduces repeated training overhead in the search process or lacks an interpretable metric to guide the design. To clear these hurdles, we propose 3D-Receptive Field (3DRF), an explainable and easy-to-compute metric, to estimate the quality of a CNN architecture and guide the search process of designs. To validate the effectiveness of 3DRF, we build a static optimizer to improve the CNN architectures at both the stage level and the kernel level. Our optimizer not only provides a clear and reproducible procedure but also mitigates unnecessary training efforts in the architecture search process. Extensive experiments and studies show that the models generated by our optimizer can achieve up to 5.47% accuracy improvement and up to 65.38% parameters deduction, compared with state-of-the-art CNN structures like MobileNet and ResNet.
164 - Kun He , Chao Li , Yixiao Yang 2021
The square kernel is a standard unit for contemporary Convolutional Neural Networks (CNNs), as it fits well on the tensor computation for the convolution operation. However, the receptive field in the human visual system is actually isotropic like a circle. Motivated by this observation, we propose using circle kernels with isotropic receptive fields for the convolution, and our training takes approximately equivalent amount of calculation when compared with the corresponding CNN with square kernels. Our preliminary experiments demonstrate the rationality of circle kernels. We then propose a kernel boosting strategy that integrates the circle kernels with square kernels for the training and inference, and we further let the kernel size/radius be learnable during the training. Note that we reparameterize the circle kernels or integrated kernels before the inference, thus taking no extra computation as well as the number of parameter overhead for the testing. Extensive experiments on several standard datasets, ImageNet, CIFAR-10 and CIFAR-100, using the circle kernels or integrated kernels on typical existing CNNs, show that our approach exhibits highly competitive performance. Specifically, on ImageNet with standard data augmentation, our approach dramatically boosts the performance of MobileNetV3-Small by 5.20% top-1 accuracy and 3.39% top-5 accuracy, and boosts the performance of MobileNetV3-Large by 2.16% top-1 accuracy and 1.18% top-5 accuracy.
The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popu lar network pruning is an effective method to reduce the redundancy of the models. However, the ranking of filters according to their importance on different pruning criteria may be inconsistent. One filter could be important according to a certain criterion, while it is unnecessary according to another one, which indicates that each criterion is only a partial view of the comprehensive importance. From this motivation, we propose a novel framework to integrate the existing filter pruning criteria by exploring the criteria diversity. The proposed framework contains two stages: Criteria Clustering and Filters Importance Calibration. First, we condense the pruning criteria via layerwise clustering based on the rank of importance score. Second, within each cluster, we propose a calibration factor to adjust their significance for each selected blending candidates and search for the optimal blending criterion via Evolutionary Algorithm. Quantitative results on the CIFAR-100 and ImageNet benchmarks show that our framework outperforms the state-of-the-art baselines, regrading to the compact model performance after pruning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا