ﻻ يوجد ملخص باللغة العربية
We introduce and investigate a new generalized convexity notion for functions called prox-convexity. The proximity operator of such a function is single-valued and firmly nonexpansive. We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference of convex) functions that are prox-convex, however none of these classes fully contains the one of prox-convex functions or is included into it. We show that the classical proximal point algorithm remains convergent when the convexity of the proper lower semicontinuous function to be minimized is relaxed to prox-convexity.
Friedlander, Mac^{e}do, and Pong recently introduced the projected polar proximal point algorithm (P4A) for solving optimization problems by using the closed perspective transforms of convex objectives. We analyse a generalization (GP4A) which replac
In this paper, we develop a parameterized proximal point algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a wors
We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these
The Fast Proximal Gradient Method (FPGM) and the Monotone FPGM (MFPGM) for minimization of nonsmooth convex functions are introduced and applied to tomographic image reconstruction. Convergence properties of the sequence of objective function values
In the literature, there are a few researches to design some parameters in the Proximal Point Algorithm (PPA), especially for the multi-objective convex optimizations. Introducing some parameters to PPA can make it more flexible and attractive. Mainl