ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Randomized Compiling for the QITE Algorithm

123   0   0.0 ( 0 )
 نشر من قبل Jean-Loup Ville
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of the current generation of Noisy Intermediate-Scale Quantum (NISQ) hardware shows that quantum hardware may be able to tackle complex problems even without error correction. One outstanding issue is that of coherent errors arising from the increased complexity of these devices. These errors can accumulate through a circuit, making their impact on algorithms hard to predict and mitigate. Iterative algorithms like Quantum Imaginary Time Evolution are susceptible to these errors. This article presents the combination of both noise tailoring using Randomized Compiling and error mitigation with a purification. We also show that Cycle Benchmarking gives an estimate of the reliability of the purification. We apply this method to the Quantum Imaginary Time Evolution of a Transverse Field Ising Model and report an energy estimation and a ground state infidelity both below 1%. Our methodology is general and can be used for other algorithms and platforms. We show how combining noise tailoring and error mitigation will push forward the performance of NISQ devices.



قيم البحث

اقرأ أيضاً

The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error which has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors, and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally-measured error rates. Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.
Compiling quantum circuits lends itself to an elegant formulation in the language of rewriting systems on non commutative polynomial algebras $mathbb Qlangle Xrangle$. The alphabet $X$ is the set of the allowed hardware 2-qubit gates. The set of gate s that we wish to implement from $X$ are elements of a free monoid $X^*$ (obtained by concatenating the letters of $X$). In this setting, compiling an idealized gate is equivalent to computing its unique normal form with respect to the rewriting system $mathcal Rsubset mathbb Qlangle Xrangle$ that encodes the hardware constraints and capabilities. This system $mathcal R$ is generated using two different mechanisms: 1) using the Knuth-Bendix completion algorithm on the algebra $mathbb Qlangle Xrangle$, and 2) using the Buchberger algorithm on the shuffle algebra $mathbb Q[L]$ where $L$ is the set of Lyndon words on $X$.
Based on the connection between the categorical derivation of classical programs from specifications and the category-theoretic approach to quantum physics, this paper contributes to extending the laws of classical program algebra to quantum programm ing. This aims at building correct-by-construction quantum circuits to be deployed on quantum devices such as those available at the IBM Q Experience. Quantum circuit reversibility is ensured by minimal complements, extended recursively. Measurements are postponed to the end of such recursive computations, termed quantamorphisms, thus maximising the quantum effect. Quantamorphisms are classical catamorphisms which, extended to ensure quantum reversibility, implement quantum cycles (vulg. for-loops) and quantum folds on lists. By Kleisli correspondence, quantamorphisms can be written as monadic functional programs with quantum parameters. This enables the use of Haskell, a monadic functional programming language, to perform the experimental work. Such calculated quantum programs prepared in Haskell are pushed through Quipper to the Qiskit interface to IBM Q quantum devices. The generated quantum circuits - often quite large - exhibit the predicted behaviour. However, running them on real quantum devices incurs into a significant amount of errors. As quantum devices are constantly evolving, an increase in reliability is likely in the near future, allowing for our programs to run more accurately.
A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles described by the so-called Fibonacci anyon model is developed. The method is based on the observation that a universal set of quantum gates actin g on qubits encoded using triplets of these quasiparticles can be built entirely out of three-stranded braids (three-braids). These three-braids can then be efficiently compiled and improved to any required accuracy using the Solovay-Kitaev algorithm.
Quantum algorithms require a universal set of gates that can be implemented in a physical system. For these, an optimal decomposition into a sequence of available operations is desired. Here, we present a method to find such sequences for a small-sca le ion trap quantum information processor. We further adapt the method to state preparation and quantum algorithms with in-sequence measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا