ﻻ يوجد ملخص باللغة العربية
Compiling quantum circuits lends itself to an elegant formulation in the language of rewriting systems on non commutative polynomial algebras $mathbb Qlangle Xrangle$. The alphabet $X$ is the set of the allowed hardware 2-qubit gates. The set of gates that we wish to implement from $X$ are elements of a free monoid $X^*$ (obtained by concatenating the letters of $X$). In this setting, compiling an idealized gate is equivalent to computing its unique normal form with respect to the rewriting system $mathcal Rsubset mathbb Qlangle Xrangle$ that encodes the hardware constraints and capabilities. This system $mathcal R$ is generated using two different mechanisms: 1) using the Knuth-Bendix completion algorithm on the algebra $mathbb Qlangle Xrangle$, and 2) using the Buchberger algorithm on the shuffle algebra $mathbb Q[L]$ where $L$ is the set of Lyndon words on $X$.
We show the NP-completeness of the existential theory of term algebras with the Knuth-Bendix order by giving a nondeterministic polynomial-time algorithm for solving Knuth-Bendix ordering constraints.
Semidefinite Programming (SDP) is a class of convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to ma
The success of the current generation of Noisy Intermediate-Scale Quantum (NISQ) hardware shows that quantum hardware may be able to tackle complex problems even without error correction. One outstanding issue is that of coherent errors arising from
While mapping a quantum circuit to the physical layer one has to consider the numerous constraints imposed by the underlying hardware architecture. Connectivity of the physical qubits is one such constraint that restricts two-qubit operations such as
We present a constructive method to create quantum circuits that implement oracles $|xrangle|yrangle|0rangle^k mapsto |xrangle|y oplus f(x)rangle|0rangle^k$ for $n$-variable Boolean functions $f$ with low $T$-count. In our method $f$ is given as a 2-