ترغب بنشر مسار تعليمي؟ اضغط هنا

DCH-2: A Parallel Customer-Helpdesk Dialogue Corpus with Distributions of Annotators Labels

70   0   0.0 ( 0 )
 نشر من قبل Zhaohao Zeng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a data set called DCH-2, which contains 4,390 real customer-helpdesk dialogues in Chinese and their English translations. DCH-2 also contains dialogue-level annotations and turn-level annotations obtained independently from either 19 or 20 annotators. The data set was built through our effort as organisers of the NTCIR-14 Short Text Conversation and NTCIR-15 Dialogue Evaluation tasks, to help researchers understand what constitutes an effective customer-helpdesk dialogue, and thereby build efficient and helpful helpdesk systems that are available to customers at all times. In addition, DCH-2 may be utilised for other purposes, for example, as a repository for retrieval-based dialogue systems, or as a parallel corpus for machine translation in the helpdesk domain.

قيم البحث

اقرأ أيضاً

126 - Meng Chen , Ruixue Liu , Lei Shen 2019
Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task
Machine translation is highly sensitive to the size and quality of the training data, which has led to an increasing interest in collecting and filtering large parallel corpora. In this paper, we propose a new method for this task based on multilingu al sentence embeddings. In contrast to previous approaches, which rely on nearest neighbor retrieval with a hard threshold over cosine similarity, our proposed method accounts for the scale inconsistencies of this measure, considering the margin between a given sentence pair and its closest candidates instead. Our experiments show large improvements over existing methods. We outperform the best published results on the BUCC mining task and the UN reconstruction task by more than 10 F1 and 30 precision points, respectively. Filtering the English-German ParaCrawl corpus with our approach, we obtain 31.2 BLEU points on newstest2014, an improvement of more than one point over the best official filtered version.
Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local uttera nces, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
We present a parallel machine translation training corpus for English and Akuapem Twi of 25,421 sentence pairs. We used a transformer-based translator to generate initial translations in Akuapem Twi, which were later verified and corrected where nece ssary by native speakers to eliminate any occurrence of translationese. In addition, 697 higher quality crowd-sourced sentences are provided for use as an evaluation set for downstream Natural Language Processing (NLP) tasks. The typical use case for the larger human-verified dataset is for further training of machine translation models in Akuapem Twi. The higher quality 697 crowd-sourced dataset is recommended as a testing dataset for machine translation of English to Twi and Twi to English models. Furthermore, the Twi part of the crowd-sourced data may also be used for other tasks, such as representation learning, classification, etc. We fine-tune the transformer translation model on the training corpus and report benchmarks on the crowd-sourced test set.
User Simulators are one of the major tools that enable offline training of task-oriented dialogue systems. For this task the Agenda-Based User Simulator (ABUS) is often used. The ABUS is based on hand-crafted rules and its output is in semantic form. Issues arise from both properties such as limited diversity and the inability to interface a text-level belief tracker. This paper introduces the Neural User Simulator (NUS) whose behaviour is learned from a corpus and which generates natural language, hence needing a less labelled dataset than simulators generating a semantic output. In comparison to much of the past work on this topic, which evaluates user simulators on corpus-based metrics, we use the NUS to train the policy of a reinforcement learning based Spoken Dialogue System. The NUS is compared to the ABUS by evaluating the policies that were trained using the simulators. Cross-model evaluation is performed i.e. training on one simulator and testing on the other. Furthermore, the trained policies are tested on real users. In both evaluation tasks the NUS outperformed the ABUS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا