ترغب بنشر مسار تعليمي؟ اضغط هنا

On-Surface Synthesis of Graphene Nanoribbons on Two-Dimensional Rare Earth-Gold Intermetallic Compounds

89   0   0.0 ( 0 )
 نشر من قبل Yande Que
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we demonstrate two reliable routes for the fabrication of armchair-edge graphene nanoribbons (GNRs) on TbAu2/Au(111), belonging to a class of two-dimensional ferromagnetic rare earth-gold intermetallic compounds. On-surface synthesis directly on TbAu2 leads to the formation of GNRs, which are short and interconnected with each other. In contrast, the intercalation approach - on-surface synthesis of GNRs directly on Au(111) followed by rare earth intercalation - yields GNRs on TbAu2/Au(111), where both the ribbons and TbAu2 are of high quality comparable with those directly grown on clean Au(111). Besides, the as-grown ribbons retain the same band gap while changing from p-doping to weak n-doping mainly due to a change in the work function of the substrate after the rare earth intercalation. The intercalation approach might also be employed to fabricate other types of GNRs on various rare earth intermetallic compounds, providing platforms to tailor the electronic and magnetic properties of GNRs on magnetic substrates.

قيم البحث

اقرأ أيضاً

Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, We present a systematical study on the structural and electronic properties of three novel rare earth-based intermetallic com pounds, namely ReAu2 (Re = Tb, Ho, and Er), on Au(111) via directly depositing rare-earth metals onto the hot Au(111) surface. Scanning tunneling microscopy/spectroscopy measurements reveal the very similar atomic structures and electronic properties, e.g. electronic states, and surface work functions, for all these intermetallic compound systems due to the physical and chemical similarities between these rare earth elements. Further, these electronic properties are periodically modulated by the moire structures caused by the lattice mismatches between ReAu2 and Au(111). These periodically modulated surfaces could serve as templates for the self-assembly of nanostructures. Besides, these two-dimensional rare earth-based intermetallic compounds provide platforms to investigate the rare earth related catalysis, magnetisms, etc., in the lower dimensions.
Graphene-based nanostructures exhibit a vast range of exciting electronic properties that are absent in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons (AGNRs) leads to the opening of substant ial electronic band gaps that are directly linked to their structural boundary conditions. Even more intriguing are nanostructures with zigzag edges, which are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The most prominent example is zigzag graphene nanoribbons (ZGNRs) for which the edge states are predicted to couple ferromagnetically along the edge and antiferromagnetically between them. So far, a direct observation of the spin-polarized edge states for specifically designed and controlled zigzag edge topologies has not been achieved. This is mainly due to the limited precision of current top-down approaches, which results in poorly defined edge structures. Bottom-up fabrication approaches, on the other hand, were so far only successfully applied to the growth of AGNRs and related structures. Here, we describe the successful bottom-up synthesis of ZGNRs, which are fabricated by the surface-assisted colligation and cyclodehydrogenation of specifically designed precursor monomers including carbon groups that yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we prove the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will finally allow the characterization of their predicted spin-related properties such as spin confinement and filtering, and ultimately add the spin degree of freedom to graphene-based circuitry.
112 - Ming An , Shuai Dong 2020
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very rec ently, the experimental observation of ferromagnetism in Cr$_2$Ge$_2$Te$_6$ bilayer and CrI$_3$ monolayer opened a door to pursuit long-absent intrinsic magnetic orders in two-dimensional materials. Meanwhile, the ferroelectricity was also experimentally found in SnTe monolayer and CuInP$_2$S$_6$ few layers. The emergence of these ferroic orders in the two-dimensional limit not only brings new challenges to our physical knowledge, but also provides more functionalities for potential applications. Among various two-dimensional ferroic ordered materials, transition/rare-earth metal halides and their derivants are very common. In this Research Update, based on transition/rare-earth metal halides, the physics of various ferroic orders in two-dimensional will be illustrated. The potential applications based on their magnetic and polar properties will also be discussed.
Chiral graphene nanoribbons are extremely interesting structures due to their low bandgaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces and assess the effect of charge transfer on their properties.
Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials beyond graphene and novel topological phases of matter. While surface oxidation in ambient conditi ons was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا