ﻻ يوجد ملخص باللغة العربية
We establish a new H2 Korns inequality and its discrete analog, which greatly simplify the construction of nonconforming elements for a linear strain gradient elastic model. The Specht triangle [41] and the NZT tetrahedron [45] are analyzed as two typical representatives for robust nonconforming elements in the sense that the rate of convergence is independent of the small material parameter. We construct new regularized interpolation estimate and the enriching operator for both elements, and prove the error estimates under minimal smoothness assumption on the solution. Numerical results are consistent with the theoretical prediction.
We propose two nonconforming finite elements to approximate a boundary value problem arising from strain gradient elasticity, which is a higher-order perturbation of the linearized elastic system. Our elements are H$^2-$nonconforming while H$^1-$conf
We propose a family of mixed finite element that is robust for the nearly incompressible strain gradient model, which is a fourth order singular perturbation elliptic system. The element is similar to the Taylor-Hood element in the Stokes flow. Using
We develop a stable finite difference method for the elastic wave equations in bounded media, where the material properties can be discontinuous at curved interfaces. The governing equations are discretized in second order form by a fourth or sixth o
The well-known Prager-Synge identity is valid in $H^1(Omega)$ and serves as a foundation for developing equilibrated a posteriori error estimators for continuous elements. In this paper, we introduce a new inequality, that may be regarded as a genera
We address the issue of designing robust stabilization terms for the nonconforming virtual element method. To this end, we transfer the problem of defining the stabilizing bilinear form from the elemental nonconforming virtual element space, whose fu