ترغب بنشر مسار تعليمي؟ اضغط هنا

Taylor-Hood like finite elements for nearly incompressible strain gradient elasticity problems

197   0   0.0 ( 0 )
 نشر من قبل Yulei Liao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a family of mixed finite element that is robust for the nearly incompressible strain gradient model, which is a fourth order singular perturbation elliptic system. The element is similar to the Taylor-Hood element in the Stokes flow. Using a uniform stable Fortin operator for the mixed finite element pairs, we are able to prove the optimal rate of convergence that is robust in the incompressible limit. Moreover, we estimate the convergence rate of the numerical solution to the unperturbed second order elliptic system. Numerical results for both smooth solutions and the solutions with sharp layers confirm the theoretical prediction.



قيم البحث

اقرأ أيضاً

We design a Fortin operator for the lowest-order Taylor-Hood element in any dimension, which was previously constructed only in 2D. In the construction we use tangential edge bubble functions for the divergence correcting operator. This naturally lea ds to an alternative inf-sup stable reduced finite element pair. Furthermore, we provide a counterexample to the inf-sup stability and hence to existence of a Fortin operator for the $P_2$-$P_0$ and the augmented Taylor-Hood element in 3D.
We propose two nonconforming finite elements to approximate a boundary value problem arising from strain gradient elasticity, which is a higher-order perturbation of the linearized elastic system. Our elements are H$^2-$nonconforming while H$^1-$conf orming. We show both elements converges in the energy norm uniformly with respect to the perturbation parameter.
181 - Yuwen Li , Ludmil Zikatanov 2021
This work proposes a new stabilized $P_1times P_0$ finite element method for solving the incompressible Navier--Stokes equations. The numerical scheme is based on a reduced Bernardi--Raugel element with statically condensed face bubbles and is pressu re-robust in the small viscosity regime. For the Stokes problem, an error estimate uniform with respect to the kinematic viscosity is shown. For the Navier--Stokes equation, the nonlinear convection term is discretized using an edge-averaged finite element method. In comparison with classical schemes, the proposed method does not require tuning of parameters and is validated for competitiveness on several benchmark problems in 2 and 3 dimensional space.
154 - R. Eymard 2020
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization te rms involving the pressure jumps across the edges of the mesh.
We consider so-called Herrmann and Hydrostatic mixed formulations of classical linear elasticity and analyse the error associated with locally stabilised $P_1-P_0$ finite element approximation. First, we prove a stability estimate for the discrete pr oblem and establish an a priori estimate for the associated energy error. Second, we consider a residual-based a posteriori error estimator as well as a local Poisson problem estimator. We establish bounds for the energy error that are independent of the Lam{e} coefficients and prove that the estimators are robust in the incompressible limit. A key issue to be addressed is the requirement for pressure stabilisation. Numerical results are presented that validate the theory. The software used is available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا