ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Deep Learning for Joint Audio-Visual Lip Biometrics

310   0   0.0 ( 0 )
 نشر من قبل Meng Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Audio-visual (AV) lip biometrics is a promising authentication technique that leverages the benefits of both the audio and visual modalities in speech communication. Previous works have demonstrated the usefulness of AV lip biometrics. However, the lack of a sizeable AV database hinders the exploration of deep-learning-based audio-visual lip biometrics. To address this problem, we compile a moderate-size database using existing public databases. Meanwhile, we establish the DeepLip AV lip biometrics system realized with a convolutional neural network (CNN) based video module, a time-delay neural network (TDNN) based audio module, and a multimodal fusion module. Our experiments show that DeepLip outperforms traditional speaker recognition models in context modeling and achieves over 50% relative improvements compared with our best single modality baseline, with an equal error rate of 0.75% and 1.11% on the test datasets, respectively.



قيم البحث

اقرأ أيضاً

Contrastive learning has delivered impressive results in many audio-visual representation learning scenarios. However, existing approaches optimize for learning either textit{global} representations useful for tasks such as classification, or textit{ local} representations useful for tasks such as audio-visual source localization and separation. While they produce satisfactory results in their intended downstream scenarios, they often fail to generalize to tasks that they were not originally designed for. In this work, we propose a versatile self-supervised approach to learn audio-visual representations that generalize to both the tasks which require global semantic information (e.g., classification) and the tasks that require fine-grained spatio-temporal information (e.g. localization). We achieve this by optimizing two cross-modal contrastive objectives that together encourage our model to learn discriminative global-local visual information given audio signals. To show that our approach learns generalizable video representations, we evaluate it on various downstream scenarios including action/sound classification, lip reading, deepfake detection, and sound source localization.
122 - Weicong Chen , Xu Tan , Yingce Xia 2020
Lip reading aims to recognize text from talking lip, while lip generation aims to synthesize talking lip according to text, which is a key component in talking face generation and is a dual task of lip reading. In this paper, we develop DualLip, a sy stem that jointly improves lip reading and generation by leveraging the task duality and using unlabeled text and lip video data. The key ideas of the DualLip include: 1) Generate lip video from unlabeled text with a lip generation model, and use the pseudo pairs to improve lip reading; 2) Generate text from unlabeled lip video with a lip reading model, and use the pseudo pairs to improve lip generation. We further extend DualLip to talking face generation with two additionally introduced components: lip to face generation and text to speech generation. Experiments on GRID and TCD-TIMIT demonstrate the effectiveness of DualLip on improving lip reading, lip generation, and talking face generation by utilizing unlabeled data. Specifically, the lip generation model in our DualLip system trained with only10% paired data surpasses the performance of that trained with the whole paired data. And on the GRID benchmark of lip reading, we achieve 1.16% character error rate and 2.71% word error rate, outperforming the state-of-the-art models using the same amount of paired data.
The large amount of audiovisual content being shared online today has drawn substantial attention to the prospect of audiovisual self-supervised learning. Recent works have focused on each of these modalities separately, while others have attempted t o model both simultaneously in a cross-modal fashion. However, comparatively little attention has been given to leveraging one modality as a training objective to learn from the other. In this work, we propose Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech. We find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading through feature extraction and fine-tuning experiments. We show that our approach significantly outperforms other self-supervised methods on the Lip Reading in the Wild (LRW) dataset and achieves state-of-the-art performance on Lip Reading Sentences 2 (LRS2) using only a fraction of the total labelled data.
We present a new method and a large-scale database to detect audio-video synchronization(A/V sync) errors in tennis videos. A deep network is trained to detect the visual signature of the tennis ball being hit by the racquet in the video stream. Anot her deep network is trained to detect the auditory signature of the same event in the audio stream. During evaluation, the audio stream is searched by the audio network for the audio event of the ball being hit. If the event is found in audio, the neighboring interval in video is searched for the corresponding visual signature. If the event is not found in the video stream but is found in the audio stream, A/V sync error is flagged. We developed a large-scaled database of 504,300 frames from 6 hours of videos of tennis events, simulated A/V sync errors, and found our method achieves high accuracy on the task.
Reverberation from audio reflecting off surfaces and objects in the environment not only degrades the quality of speech for human perception, but also severely impacts the accuracy of automatic speech recognition. Prior work attempts to remove reverb eration based on the audio modality only. Our idea is to learn to dereverberate speech from audio-visual observations. The visual environment surrounding a human speaker reveals important cues about the room geometry, materials, and speaker location, all of which influence the precise reverberation effects in the audio stream. We introduce Visually-Informed Dereverberation of Audio (VIDA), an end-to-end approach that learns to remove reverberation based on both the observed sounds and visual scene. In support of this new task, we develop a large-scale dataset that uses realistic acoustic renderings of speech in real-world 3D scans of homes offering a variety of room acoustics. Demonstrating our approach on both simulated and real imagery for speech enhancement, speech recognition, and speaker identification, we show it achieves state-of-the-art performance and substantially improves over traditional audio-only methods. Project page: http://vision.cs.utexas.edu/projects/learning-audio-visual-dereverberation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا