ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning on a Budget via Teacher Imitation

60   0   0.0 ( 0 )
 نشر من قبل Ercument Ilhan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Reinforcement Learning (RL) techniques can benefit greatly from leveraging prior experience, which can be either self-generated or acquired from other entities. Action advising is a framework that provides a flexible way to transfer such knowledge in the form of actions between teacher-student peers. However, due to the realistic concerns, the number of these interactions is limited with a budget; therefore, it is crucial to perform these in the most appropriate moments. There have been several promising studies recently that address this problem setting especially from the students perspective. Despite their success, they have some shortcomings when it comes to the practical applicability and integrity as an overall solution to the learning from advice challenge. In this paper, we extend the idea of advice reusing via teacher imitation to construct a unified approach that addresses both advice collection and advice utilisation problems. We also propose a method to automatically tune the relevant hyperparameters of these components on-the-fly to make it able to adapt to any task with minimal human intervention. The experiments we performed in 5 different Atari games verify that our algorithm either surpasses or performs on-par with its top competitors while being far simpler to be employed. Furthermore, its individual components are also found to be providing significant advantages alone.

قيم البحث

اقرأ أيضاً

Imitation learning in a high-dimensional environment is challenging. Most inverse reinforcement learning (IRL) methods fail to outperform the demonstrator in such a high-dimensional environment, e.g., Atari domain. To address this challenge, we propo se a novel reward learning module to generate intrinsic reward signals via a generative model. Our generative method can perform better forward state transition and backward action encoding, which improves the modules dynamics modeling ability in the environment. Thus, our module provides the imitation agent both the intrinsic intention of the demonstrator and a better exploration ability, which is critical for the agent to outperform the demonstrator. Empirical results show that our method outperforms state-of-the-art IRL methods on multiple Atari games, even with one-life demonstration. Remarkably, our method achieves performance that is up to 5 times the performance of the demonstration.
A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple expe rts trajectories are available. We formulate representation learning as a bi-level optimization problem where the outer optimization tries to learn the joint representation and the inner optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agents past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indir ectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks.
Knowledge distillation is a widely used technique for model compression. We posit that the teacher model used in a distillation setup, captures relationships between classes, that extend beyond the original dataset. We empirically show that a teacher model can transfer this knowledge to a student model even on an {it out-of-distribution} dataset. Using this approach, we show promising results on MNIST, CIFAR-10, and Caltech-256 datasets using unlabeled image data from different sources. Our results are encouraging and help shed further light from the perspective of understanding knowledge distillation and utilizing unlabeled data to improve model quality.
Humans and animals are capable of learning a new behavior by observing others perform the skill just once. We consider the problem of allowing a robot to do the same -- learning from a raw video pixels of a human, even when there is substantial domai n shift in the perspective, environment, and embodiment between the robot and the observed human. Prior approaches to this problem have hand-specified how human and robot actions correspond and often relied on explicit human pose detection systems. In this work, we present an approach for one-shot learning from a video of a human by using human and robot demonstration data from a variety of previous tasks to build up prior knowledge through meta-learning. Then, combining this prior knowledge and only a single video demonstration from a human, the robot can perform the task that the human demonstrated. We show experiments on both a PR2 arm and a Sawyer arm, demonstrating that after meta-learning, the robot can learn to place, push, and pick-and-place new objects using just one video of a human performing the manipulation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا