ﻻ يوجد ملخص باللغة العربية
Li$_xTM$O$_2$ (TM={Ni, Co, Mn}) are promising cathodes for Li-ion batteries, whose electrochemical cycling performance is strongly governed by crystal structure and phase stability as a function of Li content at the atomistic scale. Here, we use Li$_x$CoO$_2$ (LCO) as a model system to benchmark a scale-bridging framework that combines density functional theory (DFT) calculations at the atomistic scale with phase field modeling at the continuum scale to understand the impact of phase stability on microstructure evolution. This scale bridging is accomplished by incorporating traditional statistical mechanics methods with integrable deep neural networks, which allows formation energies for specific atomic configurations to be coarse-grained and incorporated in a neural network description of the free energy of the material. The resulting realistic free energy functions enable atomistically informed phase-field simulations. These computational results allow us to make connections to experimental work on LCO cathode degradation as a function of temperature, morphology and particle size.
The ground states of Na$_x$CoO$_2$ ($0.0<x<1.0$) is studied by the LDA+Gutzwiller approach, where charge transfer and orbital fluctuations are all self-consistently treated {it ab-initio}. In contrast to previous studies, which are parameter-dependen
The idea that surface effects may play an important role in suppressing $e_g$ Fermi surface pockets on Na$_x$CoO$_2$ $(0.333 le x le 0.75)$ has been frequently proposed to explain the discrepancy between LDA calculations (performed on the bulk compou
Chemically exfoliated nanoscale few-layer thin Li$_x$CoO$_2$ samples are studied as function of annealing at various temperatures, using transmission electron microscopy (TEM) and Electron Energy Loss Spectroscopies (EELS), probing the O-K, Co-L$_{2,
Magnetic properties of Li$_x$CoO$_2$ for $x = 0.94, 0.75, 0.66$ and $0.51$ were investigated in frames of method combining Generalized Gradient Approximation with Dynamical Mean--Field Theory (GGA+DMFT). We found that a delicate interplay between Hun
We have performed x-ray photoemission spectroscopy on the system of noncentrosymmetric superconductor, Li$_2$(Pd$_x$Pt$_{1-x}$3)B. For Li$_2$Pt$_3$B, we found 2 major peaks with 2 other weak components, and the band calculations were in agreement wit