ﻻ يوجد ملخص باللغة العربية
The smooth (resp. metric and complex) Nielsen Realization Problem for K3 surfaces $M$ asks: when can a finite group $G$ of mapping classes of $M$ be realized by a finite group of diffeomorphisms (resp. isometries of a Ricci-flat metric, or automorphisms of a complex structure)? We solve the metric and compl
The Nielsen Realization problem asks when the group homomorphism from Diff(M) to pi_0 Diff(M) admits a section. For M a closed surface, Kerckhoff proved that a section exists over any finite subgroup, but Morita proved that if the genus is large enou
Dilation surfaces, or twisted quadratic differentials, are variants of translation surfaces. In this paper, we study the question of what elements or subgroups of the mapping class group can be realized as affine automorphisms of dilation surfaces. W
A Riemann surface $X$ is said to be of emph{parabolic type} if it supports a Greens function. Equivalently, the geodesic flow on the unit tangent of $X$ is ergodic. Given a Riemann surface $X$ of arbitrary topological type and a hyperbolic pants deco
Let $k$ be a number field. We give an explicit bound, depending only on $[k:mathbf{Q}]$ and the discriminant of the N{e}ron--Severi lattice, on the size of the Brauer group of a K3 surface $X/k$ that is geometrically isomorphic to the Kummer surface
We define a suitably tame class of singular symplectic curves in 4-manifolds, namely those whose singularities are modeled on complex curve singularities. We study the corresponding symplectic isotopy problem, with a focus on rational curves with irr