ﻻ يوجد ملخص باللغة العربية
Dilation surfaces, or twisted quadratic differentials, are variants of translation surfaces. In this paper, we study the question of what elements or subgroups of the mapping class group can be realized as affine automorphisms of dilation surfaces. We show that dilation surfaces can have exotic Dehn twists in their affine automorphism groups and will establish that only certain types of mapping class group elements can arise as affine automorphisms of dilation surfaces. We also generalize a construction of Thurston that constructs a translation surface from a pair of filling multicurves to dilation surfaces. This construction will give us dilation surfaces that realize a pair of Dehn multitwists in their affine automorphism groups.
The smooth (resp. metric and complex) Nielsen Realization Problem for K3 surfaces $M$ asks: when can a finite group $G$ of mapping classes of $M$ be realized by a finite group of diffeomorphisms (resp. isometries of a Ricci-flat metric, or automorphi
For each stratum of the space of translation surfaces, we introduce an infinite translation surface containing in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface $(X, omega)$ in the stratum, a mat
A Riemann surface $X$ is said to be of emph{parabolic type} if it supports a Greens function. Equivalently, the geodesic flow on the unit tangent of $X$ is ergodic. Given a Riemann surface $X$ of arbitrary topological type and a hyperbolic pants deco
Let $Sigma$ be a hyperbolic surface. We study the set of curves on $Sigma$ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary $gamma_0$. For example, in the particular case that $Sigma$ is a once-punctured to
We give a complete characterization of the relationship between the shape of a Euclidean polygon and the symbolic dynamics of its billiard flow. We prove that the only pairs of tables that can have the same bounce spectrum are right-angled tables tha