ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders

337   0   0.0 ( 0 )
 نشر من قبل Fangyu Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pretrained Masked Language Models (MLMs) have revolutionised NLP in recent years. However, previous work has indicated that off-the-shelf MLMs are not effective as universal lexical or sentence encoders without further task-specific fine-tuning on NLI, sentence similarity, or paraphrasing tasks using annotated task data. In this work, we demonstrate that it is possible to turn MLMs into effective universal lexical and sentence encoders even without any additional data and without any supervision. We propose an extremely simple, fast and effective contrastive learning technique, termed Mirror-BERT, which converts MLMs (e.g., BERT and RoBERTa) into such encoders in 20-30 seconds without any additional external knowledge. Mirror-BERT relies on fully identical or slightly modified string pairs as positive (i.e., synonymous) fine-tuning examples, and aims to maximise their similarity during identity fine-tuning. We report huge gains over off-the-shelf MLMs with Mirror-BERT in both lexical-level and sentence-level tasks, across different domains and different languages. Notably, in the standard sentence semantic similarity (STS) tasks, our self-supervised Mirror-BERT model even matches the performance of the task-tuned Sentence-BERT models from prior work. Finally, we delve deeper into the inner workings of MLMs, and suggest some evidence on why this simple approach can yield effective universal lexical and sentence encoders.



قيم البحث

اقرأ أيضاً

This paper presents a novel training method, Conditional Masked Language Modeling (CMLM), to effectively learn sentence representations on large scale unlabeled corpora. CMLM integrates sentence representation learning into MLM training by conditioni ng on the encoded vectors of adjacent sentences. Our English CMLM model achieves state-of-the-art performance on SentEval, even outperforming models learned using supervised signals. As a fully unsupervised learning method, CMLM can be conveniently extended to a broad range of languages and domains. We find that a multilingual CMLM model co-trained with bitext retrieval (BR) and natural language inference (NLI) tasks outperforms the previous state-of-the-art multilingual models by a large margin, e.g. 10% improvement upon baseline models on cross-lingual semantic search. We explore the same language bias of the learned representations, and propose a simple, post-training and model agnostic approach to remove the language identifying information from the representation while still retaining sentence semantics.
Masked Language Model (MLM) framework has been widely adopted for self-supervised language pre-training. In this paper, we argue that randomly sampled masks in MLM would lead to undesirably large gradient variance. Thus, we theoretically quantify the gradient variance via correlating the gradient covariance with the Hamming distance between two different masks (given a certain text sequence). To reduce the variance due to the sampling of masks, we propose a fully-explored masking strategy, where a text sequence is divided into a certain number of non-overlapping segments. Thereafter, the tokens within one segment are masked for training. We prove, from a theoretical perspective, that the gradients derived from this new masking schema have a smaller variance and can lead to more efficient self-supervised training. We conduct extensive experiments on both continual pre-training and general pre-training from scratch. Empirical results confirm that this new masking strategy can consistently outperform standard random masking. Detailed efficiency analysis and ablation studies further validate the advantages of our fully-explored masking strategy under the MLM framework.
Large pre-trained multilingual models like mBERT, XLM-R achieve state of the art results on language understanding tasks. However, they are not well suited for latency critical applications on both servers and edge devices. Its important to reduce th e memory and compute resources required by these models. To this end, we propose pQRNN, a projection-based embedding-free neural encoder that is tiny and effective for natural language processing tasks. Without pre-training, pQRNNs significantly outperform LSTM models with pre-trained embeddings despite being 140x smaller. With the same number of parameters, they outperform transformer baselines thereby showcasing their parameter efficiency. Additionally, we show that pQRNNs are effective student architectures for distilling large pre-trained language models. We perform careful ablations which study the effect of pQRNN parameters, data augmentation, and distillation settings. On MTOP, a challenging multilingual semantic parsing dataset, pQRNN students achieve 95.9% of the performance of an mBERT teacher while being 350x smaller. On mATIS, a popular parsing task, pQRNN students on average are able to get to 97.1% of the teacher while again being 350x smaller. Our strong results suggest that our approach is great for latency-sensitive applications while being able to leverage large mBERT-like models.
Transformer architecture has become ubiquitous in the natural language processing field. To interpret the Transformer-based models, their attention patterns have been extensively analyzed. However, the Transformer architecture is not only composed of the multi-head attention; other components can also contribute to Transformers progressive performance. In this study, we extended the scope of the analysis of Transformers from solely the attention patterns to the whole attention block, i.e., multi-head attention, residual connection, and layer normalization. Our analysis of Transformer-based masked language models shows that the token-to-token interaction performed via attention has less impact on the intermediate representations than previously assumed. These results provide new intuitive explanations of existing reports; for example, discarding the learned attention patterns tends not to adversely affect the performance. The codes of our experiments are publicly available.
The use of deep pre-trained bidirectional transformers has led to remarkable progress in a number of applications (Devlin et al., 2018). For tasks that make pairwise comparisons between sequences, matching a given input with a corresponding label, tw o approaches are common: Cross-encoders performing full self-attention over the pair and Bi-encoders encoding the pair separately. The former often performs better, but is too slow for practical use. In this work, we develop a new transformer architecture, the Poly-encoder, that learns global rather than token level self-attention features. We perform a detailed comparison of all three approaches, including what pre-training and fine-tuning strategies work best. We show our models achieve state-of-the-art results on three existing tasks; that Poly-encoders are faster than Cross-encoders and more accurate than Bi-encoders; and that the best results are obtained by pre-training on large datasets similar to the downstream tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا