ﻻ يوجد ملخص باللغة العربية
Centralized monetary policy, leading to persistent inflation, is often inconsistent, untrustworthy, and unpredictable. Algorithmic stable coins enabled by blockchain technology are promising in solving this problem. Algorithmic stable coins utilize a monetary policy that is entirely rule-based. However, there is little understanding about how to optimize the rule. We propose a model that trade-offs between the price and supply stability. We further study the comparative statistics by varying several design features. Finally, we discuss the empirical implications and further research for industry applications.
We investigate an optimal investment-consumption and optimal level of insurance on durable consumption goods with a positive loading in a continuous-time economy. We assume that the economic agent invests in the financial market and in durable as wel
There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svensson (1999) a
Background: A major question in Covid-19 research is whether democracies handled the Covid-19 pandemic crisis better or worse than authoritarian countries. However, it is important to consider the issues of democracy versus authoritarianism, and stat
AI and reinforcement learning (RL) have improved many areas, but are not yet widely adopted in economic policy design, mechanism design, or economics at large. At the same time, current economic methodology is limited by a lack of counterfactual data
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent)