ترغب بنشر مسار تعليمي؟ اضغط هنا

Does BERT Pretrained on Clinical Notes Reveal Sensitive Data?

153   0   0.0 ( 0 )
 نشر من قبل Sarthak Jain
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large Transformers pretrained over clinical notes from Electronic Health Records (EHR) have afforded substantial gains in performance on predictive clinical tasks. The cost of training such models (and the necessity of data access to do so) coupled with their utility motivates parameter sharing, i.e., the release of pretrained models such as ClinicalBERT. While most efforts have used deidentified EHR, many researchers have access to large sets of sensitive, non-deidentified EHR with which they might train a BERT model (or similar). Would it be safe to release the weights of such a model if they did? In this work, we design a battery of approaches intended to recover Personal Health Information (PHI) from a trained BERT. Specifically, we attempt to recover patient names and conditions with which they are associated. We find that simple probing methods are not able to meaningfully extract sensitive information from BERT trained over the MIMIC-III corpus of EHR. However, more sophisticated attacks may succeed in doing so: To facilitate such research, we make our experimental setup and baseline probing models available at https://github.com/elehman16/exposing_patient_data_release



قيم البحث

اقرأ أيضاً

While there are more than 7000 languages in the world, most translation research efforts have targeted a few high-resource languages. Commercial translation systems support only one hundred languages or fewer, and do not make these models available f or transfer to low resource languages. In this work, we present useful tools for machine translation research: MTData, NLCodec, and RTG. We demonstrate their usefulness by creating a multilingual neural machine translation model capable of translating from 500 source languages to English. We make this multilingual model readily downloadable and usable as a service, or as a parent model for transfer-learning to even lower-resource languages.
Modern pre-trained language models are mostly built upon backbones stacking self-attention and feed-forward layers in an interleaved order. In this paper, beyond this stereotyped layer pattern, we aim to improve pre-trained models by exploiting layer variety from two aspects: the layer type set and the layer order. Specifically, besides the original self-attention and feed-forward layers, we introduce convolution into the layer type set, which is experimentally found beneficial to pre-trained models. Furthermore, beyond the original interleaved order, we explore more layer orders to discover more powerful architectures. However, the introduced layer variety leads to a large architecture space of more than billions of candidates, while training a single candidate model from scratch already requires huge computation cost, making it not affordable to search such a space by directly training large amounts of candidate models. To solve this problem, we first pre-train a supernet from which the weights of all candidate models can be inherited, and then adopt an evolutionary algorithm guided by pre-training accuracy to find the optimal architecture. Extensive experiments show that LV-BERT model obtained by our method outperforms BERT and its variants on various downstream tasks. For example, LV-BERT-small achieves 79.8 on the GLUE testing set, 1.8 higher than the strong baseline ELECTRA-small.
Contextualized representations give significantly improved results for a wide range of NLP tasks. Much work has been dedicated to analyzing the features captured by representative models such as BERT. Existing work finds that syntactic, semantic and word sense knowledge are encoded in BERT. However, little work has investigated word features for character-based languages such as Chinese. We investigate Chinese BERT using both attention weight distribution statistics and probing tasks, finding that (1) word information is captured by BERT; (2) word-level features are mostly in the middle representation layers; (3) downstream tasks make different use of word features in BERT, with POS tagging and chunking relying the most on word features, and natural language inference relying the least on such features.
We propose a novel data augmentation method for labeled sentences called conditional BERT contextual augmentation. Data augmentation methods are often applied to prevent overfitting and improve generalization of deep neural network models. Recently p roposed contextual augmentation augments labeled sentences by randomly replacing words with more varied substitutions predicted by language model. BERT demonstrates that a deep bidirectional language model is more powerful than either an unidirectional language model or the shallow concatenation of a forward and backward model. We retrofit BERT to conditional BERT by introducing a new conditional masked language modelfootnote{The term conditional masked language model appeared once in original BERT paper, which indicates context-conditional, is equivalent to term masked language model. In our paper, conditional masked language model indicates we apply extra label-conditional constraint to the masked language model.} task. The well trained conditional BERT can be applied to enhance contextual augmentation. Experiments on six various different text classification tasks show that our method can be easily applied to both convolutional or recurrent neural networks classifier to obtain obvious improvement.
Recently, transformer-based language models such as BERT have shown tremendous performance improvement for a range of natural language processing tasks. However, these language models usually are computation expensive and memory intensive during infe rence. As a result, it is difficult to deploy them on resource-restricted devices. To improve the inference performance, as well as reduce the model size while maintaining the model accuracy, we propose a novel quantization method named KDLSQ-BERT that combines knowledge distillation (KD) with learned step size quantization (LSQ) for language model quantization. The main idea of our method is that the KD technique is leveraged to transfer the knowledge from a teacher model to a student model when exploiting LSQ to quantize that student model during the quantization training process. Extensive experiment results on GLUE benchmark and SQuAD demonstrate that our proposed KDLSQ-BERT not only performs effectively when doing different bit (e.g. 2-bit $sim$ 8-bit) quantization, but also outperforms the existing BERT quantization methods, and even achieves comparable performance as the full-precision base-line model while obtaining 14.9x compression ratio. Our code will be public available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا