ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Attention for Multi-Agent Coordination and Social Learning

139   0   0.0 ( 0 )
 نشر من قبل Dennis Lee
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Joint attention - the ability to purposefully coordinate attention with another agent, and mutually attend to the same thing -- is a critical component of human social cognition. In this paper, we ask whether joint attention can be useful as a mechanism for improving multi-agent coordination and social learning. We first develop deep reinforcement learning (RL) agents with a recurrent visual attention architecture. We then train agents to minimize the difference between the attention weights that they apply to the environment at each timestep, and the attention of other agents. Our results show that this joint attention incentive improves agents ability to solve difficult coordination tasks, by reducing the exponential cost of exploring the joint multi-agent action space. Joint attention leads to higher performance than a competitive centralized critic baseline across multiple environments. Further, we show that joint attention enhances agents ability to learn from experts present in their environment, even when completing hard exploration tasks that do not require coordination. Taken together, these findings suggest that joint attention may be a useful inductive bias for multi-agent learning.



قيم البحث

اقرأ أيضاً

The intelligent control of the traffic signal is critical to the optimization of transportation systems. To achieve global optimal traffic efficiency in large-scale road networks, recent works have focused on coordination among intersections, which h ave shown promising results. However, existing studies paid more attention to observations sharing among intersections (both explicit and implicit) and did not care about the consequences after decisions. In this paper, we design a multiagent coordination framework based on Deep Reinforcement Learning methods for traffic signal control, defined as {gamma}-Reward that includes both original {gamma}-Reward and {gamma}-Attention-Reward. Specifically, we propose the Spatial Differentiation method for coordination which uses the temporal-spatial information in the replay buffer to amend the reward of each action. A concise theoretical analysis that proves the proposed model can converge to Nash equilibrium is given. By extending the idea of Markov Chain to the dimension of space-time, this truly decentralized coordination mechanism replaces the graph attention method and realizes the decoupling of the road network, which is more scalable and more in line with practice. The simulation results show that the proposed model remains a state-of-the-art performance even not use a centralized setting. Code is available in https://github.com/Skylark0924/Gamma Reward.
122 - Yong Liu , Weixun Wang , Yujing Hu 2019
In large-scale multi-agent systems, the large number of agents and complex game relationship cause great difficulty for policy learning. Therefore, simplifying the learning process is an important research issue. In many multi-agent systems, the inte ractions between agents often happen locally, which means that agents neither need to coordinate with all other agents nor need to coordinate with others all the time. Traditional methods attempt to use pre-defined rules to capture the interaction relationship between agents. However, the methods cannot be directly used in a large-scale environment due to the difficulty of transforming the complex interactions between agents into rules. In this paper, we model the relationship between agents by a complete graph and propose a novel game abstraction mechanism based on two-stage attention network (G2ANet), which can indicate whether there is an interaction between two agents and the importance of the interaction. We integrate this detection mechanism into graph neural network-based multi-agent reinforcement learning for conducting game abstraction and propose two novel learning algorithms GA-Comm and GA-AC. We conduct experiments in Traffic Junction and Predator-Prey. The results indicate that the proposed methods can simplify the learning process and meanwhile get better asymptotic performance compared with state-of-the-art algorithms.
Centralized Training with Decentralized Execution (CTDE) has been a popular paradigm in cooperative Multi-Agent Reinforcement Learning (MARL) settings and is widely used in many real applications. One of the major challenges in the training process i s credit assignment, which aims to deduce the contributions of each agent according to the global rewards. Existing credit assignment methods focus on either decomposing the joint value function into individual value functions or measuring the impact of local observations and actions on the global value function. These approaches lack a thorough consideration of the complicated interactions among multiple agents, leading to an unsuitable assignment of credit and subsequently mediocre results on MARL. We propose Shapley Counterfactual Credit Assignment, a novel method for explicit credit assignment which accounts for the coalition of agents. Specifically, Shapley Value and its desired properties are leveraged in deep MARL to credit any combinations of agents, which grants us the capability to estimate the individual credit for each agent. Despite this capability, the main technical difficulty lies in the computational complexity of Shapley Value who grows factorially as the number of agents. We instead utilize an approximation method via Monte Carlo sampling, which reduces the sample complexity while maintaining its effectiveness. We evaluate our method on StarCraft II benchmarks across different scenarios. Our method outperforms existing cooperative MARL algorithms significantly and achieves the state-of-the-art, with especially large margins on tasks with more severe difficulties.
The incorporation of macro-actions (temporally extended actions) into multi-agent decision problems has the potential to address the curse of dimensionality associated with such decision problems. Since macro-actions last for stochastic durations, mu ltiple agents executing decentralized policies in cooperative environments must act asynchronously. We present an algorithm that modifies generalized advantage estimation for temporally extended actions, allowing a state-of-the-art policy optimization algorithm to optimize policies in Dec-POMDPs in which agents act asynchronously. We show that our algorithm is capable of learning optimal policies in two cooperative domains, one involving real-time bus holding control and one involving wildfire fighting with unmanned aircraft. Our algorithm works by framing problems as event-driven decision processes, which are scenarios in which the sequence and timing of actions and events are random and governed by an underlying stochastic process. In addition to optimizing policies with continuous state and action spaces, our algorithm also facilitates the use of event-driven simulators, which do not require time to be discretized into time-steps. We demonstrate the benefit of using event-driven simulation in the context of multiple agents taking asynchronous actions. We show that fixed time-step simulation risks obfuscating the sequence in which closely separated events occur, adversely affecting the policies learned. In addition, we show that arbitrarily shrinking the time-step scales poorly with the number of agents.
In multi-agent reinforcement learning, discovering successful collective behaviors is challenging as it requires exploring a joint action space that grows exponentially with the number of agents. While the tractability of independent agent-wise explo ration is appealing, this approach fails on tasks that require elaborate group strategies. We argue that coordinating the agents policies can guide their exploration and we investigate techniques to promote such an inductive bias. We propose two policy regularization methods: TeamReg, which is based on inter-agent action predictability and CoachReg that relies on synchronized behavior selection. We evaluate each approach on four challenging continuous control tasks with sparse rewards that require varying levels of coordination as well as on the discrete action Google Research Football environment. Our experiments show improved performance across many cooperative multi-agent problems. Finally, we analyze the effects of our proposed methods on the policies that our agents learn and show that our methods successfully enforce the qualities that we propose as proxies for coordinated behaviors.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا