ﻻ يوجد ملخص باللغة العربية
This work develops a new multifidelity ensemble Kalman filter (MFEnKF) algorithm based on linear control variate framework. The approach allows for rigorous multifidelity extensions of the EnKF, where the uncertainty in coarser fidelities in the hierarchy of models represent control variates for the uncertainty in finer fidelities. Small ensembles of high fidelity model runs are complemented by larger ensembles of cheaper, lower fidelity runs, to obtain much improved analyses at only small additional computational costs. We investigate the use of reduced order models as coarse fidelity control variates in the MFEnKF, and provide analyses to quantify the improvements over the traditional ensemble Kalman filters. We apply these ideas to perform data assimilation with a quasi-geostrophic test problem, using direct numerical simulation and a corresponding POD-Galerkin reduced order model. Numerical results show that the two-fidelity MFEnKF provides better analyses than existing EnKF algorithms at comparable or reduced computational costs.
The unscented Kalman inversion (UKI) presented in [1] is a general derivative-free approach to solving the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl
We present a novel algorithm based on the ensemble Kalman filter to solve inverse problems involving multiscale elliptic partial differential equations. Our method is based on numerical homogenization and finite element discretization and allows to r
In this work we marry multi-index Monte Carlo with ensemble Kalman filtering (EnKF) to produce the multi-index EnKF method (MIEnKF). The MIEnKF method is based on independent samples of four-coupled EnKF estimators on a multi-index hierarchy of resol
The spatial dependent unknown acoustic source is reconstructed according noisy multiple frequency data on a remote closed surface. Assume that the unknown function is supported on a bounded domain. To determine the support, we present a statistical i
Ensemble Kalman Sampler (EKS) is a method to find approximately $i.i.d.$ samples from a target distribution. As of today, why the algorithm works and how it converges is mostly unknown. The continuous version of the algorithm is a set of coupled stoc