ﻻ يوجد ملخص باللغة العربية
Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated $gamma$-ray beams from hollow micro-channel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons. The photon beam generated in the 3D setup is found to be more diverged accompanied with a lower conversion efficiency. Our work concludes that the 2D simulation can qualitatively reproduce the features in 3D simulation, but for quantitative evaluations and reliable predictions to facilitate experiment designs, 3D modelling is strongly recommended.
The use of ultrathin solid foils offers optimal conditions for accelerating protons from laser-matter interactions. When the target is thin enough that relativistic self-induced transparency (RSIT) sets in, all of the target electrons get heated to h
Single-shot laser-induced damage threshold (LIDT) measurements of multi-type free-standing ultrathin foils were performed in vacuum environment for 800 nm laser pulses with durations {tau} ranging from 50 fs to 200 ps. Results show that the laser dam
Experiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon pea
A detailed study of direct laser-driven electron acceleration in paraxial Laguerre-Gaussian modes corresponding to helical beams $text{LG}_{0m}$ with azimuthal modes $m=left{1,2,3,4,5right}$ is presented. Due to the difference between the ponderomoti