ﻻ يوجد ملخص باللغة العربية
The acceleration of ions from ultra-thin foils has been investigated using 250 TW, sub-ps laser pulses, focused on target at intensities up to $3times10^{20} Wcm2$. The ion spectra show the appearance of narrow band features for proton and Carbon peaked at higher energy (in the 5-10 MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features, and their scaling with laser and target parameters, provide evidence of a multispecies scenario of Radiation Pressure Acceleration in the Light Sail mode, as confirmed by analytical estimates and 2D Particle In Cell simulations. The scaling indicates that monoenergetic peaks with more than 100 MeV/nucleon energies are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is ob
Scaling laws of ion acceleration in ultrathin foils driven by radiation pressure of intense laser pulses are investigated by theoretical analysis and two-dimensional particle-in-cell simulations. Considering the instabilities are inevitable during la
The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating i
The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and colli
Experiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of