ﻻ يوجد ملخص باللغة العربية
Let $mathcal{I}(R)$ be the set of all ideals of a ring $R$, $delta$ be an expansion function of $mathcal{I}(R)$. In this paper, the $delta$-$J$-ideal of a commutative ring is defined, that is, if $a, bin R$ and $abin Iin mathcal{I}(R)$, then $ain J(R)$ (the Jacobson radical of $R$) or $bin delta(I)$. Moreover, some properties of $delta$-$J$-ideals are discussed,such as localizations, homomorphic images, idealization and so on.
Let $R$ be a commutative ring with identity. In this paper, we introduce the concept of weakly $1$-absorbing prime ideals which is a generalization of weakly prime ideals. A proper ideal $I$ of $R$ is called weakly $1$-absorbing prime if for all nonu
The first goal of the present paper is to study the class groups of the edge rings of complete multipartite graphs, denoted by $Bbbk[K_{r_1,ldots,r_n}]$, where $1 leq r_1 leq cdots leq r_n$. More concretely, we prove that the class group of $Bbbk[K_{
An analog of the prime ideals for simple non-commutative rings is introduced. We prove the fundamental theorem of arithmetic for such rings. The result is used to classify the surface knots and links in the smooth 4-dimensional manifolds.
It is proven that each commutative arithmetical ring $R$ has a finitistic weak dimension $leq 2$. More precisely, this dimension is 0 if $R$ is locally IF, 1 if $R$ is locally semicoherent and not IF, and 2 in the other cases.
We describe new classes of noetherian local rings $R$ whose finitely generated modules $M$ have the property that $Tor_i^R(M,M)=0$ for $igg 0$ implies that $M$ has finite projective dimension, or $Ext^i_R(M,M)=0$ for $igg 0$ implies that $M$ has fini