ترغب بنشر مسار تعليمي؟ اضغط هنا

On weakly $1$-absorbing prime ideals of commutative rings

63   0   0.0 ( 0 )
 نشر من قبل Reza Nikandish
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $R$ be a commutative ring with identity. In this paper, we introduce the concept of weakly $1$-absorbing prime ideals which is a generalization of weakly prime ideals. A proper ideal $I$ of $R$ is called weakly $1$-absorbing prime if for all nonunit elements $a,b,c in R$ such that $0 eq abc in I$, then either $ab in I$ or $c in I$. A number of results concerning weakly $1$-absorbing prime ideals and examples of weakly $1$-absorbing prime ideals are given. It is proved that if $I$ is a weakly $1$-absorbing prime ideal of a ring $R$ and $0 eq I_1I_2I_3 subseteq I$ for some ideals $I_1, I_2, I_3$ of $R$ such that $I$ is free triple-zero with respect to $I_1I_2I_3$, then $ I_1I_2 subseteq I$ or $I_3subseteq I$. Among other things, it is shown that if $I$ is a weakly $1$-absorbing prime ideal of $R$ that is not $1$-absorbing prime, then $I^3 = 0$. Moreover, weakly $1$-absorbing prime ideals of PIDs and Dedekind domains are characterized. Finally, we investigate commutative rings with the property that all proper ideals are weakly $1$-absorbing primes.

قيم البحث

اقرأ أيضاً

Let $mathcal{I}(R)$ be the set of all ideals of a ring $R$, $delta$ be an expansion function of $mathcal{I}(R)$. In this paper, the $delta$-$J$-ideal of a commutative ring is defined, that is, if $a, bin R$ and $abin Iin mathcal{I}(R)$, then $ain J(R )$ (the Jacobson radical of $R$) or $bin delta(I)$. Moreover, some properties of $delta$-$J$-ideals are discussed,such as localizations, homomorphic images, idealization and so on.
Let $R$ be a commutative ring. We investigate $R$-modules which can be written as emph{finite} sums of {it {second}} $R$-submodules (we call them emph{second representable}). We provide sufficient conditions for an $R$-module $M$ to be have a (minima l) second presentation, in particular within the class of lifting modules. Moreover, we investigate the class of (emph{main}) emph{second attached prime ideals} related to a module with such a presentation.
We study the q-commutative power series ring R:=k_q[[x_1,...,x_n]], defined by the relations x_ix_j = q_{ij}x_j x_i, for multiplicatively antisymmetric scalars q_{ij} in a field k. Our results provide a detailed account of prime ideal structure for a class of noncommutative, complete, local, noetherian domains having arbitrarily high (but finite) Krull, global, and classical Krull dimension. In particular, we prove that the prime spectrum of R is normally separated and is finitely stratified by commutative noetherian spectra. Combining this normal separation with results of Chan, Wu, Yekutieli, and Zhang, we are able to conclude that R is catenary. Following the approach of Brown and Goodearl, we also show that links between prime ideals are provided by canonical automorphisms. Moreover, for sufficiently generic q_{ij}, we find that R has only finitely many prime ideals and is a UFD (in the sense of Chatters).
173 - Peyman Nasehpour 2015
Let $M$ be an $R$-module and $c$ the function from $M$ to the ideals of $R$ defined by $c(x) = cap lbrace I colon I text{is an ideal of} R text{and} x in IM rbrace $. $M$ is said to be a content $R$-module if $x in c(x)M $, for all $x in M$. $B$ is c alled a content $R$-algebra, if it is a faithfully flat and content $R$-module and it satisfies the Dedekind-Mertens content formula. In this article, we prove some new results for content modules and algebras by using ideal theoretic methods.
The first goal of the present paper is to study the class groups of the edge rings of complete multipartite graphs, denoted by $Bbbk[K_{r_1,ldots,r_n}]$, where $1 leq r_1 leq cdots leq r_n$. More concretely, we prove that the class group of $Bbbk[K_{ r_1,ldots,r_n}]$ is isomorphic to $mathbb{Z}^n$ if $n =3$ with $r_1 geq 2$ or $n geq 4$, while it turns out that the excluded cases can be deduced into Hibi rings. The second goal is to investigate the special class of divisorial ideals of $Bbbk[K_{r_1,ldots,r_n}]$, called conic divisorial ideals. We describe conic divisorial ideals for certain $K_{r_1,ldots,r_n}$ including all cases where $Bbbk[K_{r_1,ldots,r_n}]$ is Gorenstein. Finally, we give a non-commutative crepant resolution (NCCR) of $Bbbk[K_{r_1,ldots,r_n}]$ in the case where it is Gorenstein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا