ترغب بنشر مسار تعليمي؟ اضغط هنا

Orthogonalizing Convolutional Layers with the Cayley Transform

131   0   0.0 ( 0 )
 نشر من قبل Asher Trockman
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has highlighted several advantages of enforcing orthogonality in the weight layers of deep networks, such as maintaining the stability of activations, preserving gradient norms, and enhancing adversarial robustness by enforcing low Lipschitz constants. Although numerous methods exist for enforcing the orthogonality of fully-connected layers, those for convolutional layers are more heuristic in nature, often focusing on penalty methods or limited classes of convolutions. In this work, we propose and evaluate an alternative approach to directly parameterize convolutional layers that are constrained to be orthogonal. Specifically, we propose to apply the Cayley transform to a skew-symmetric convolution in the Fourier domain, so that the inverse convolution needed by the Cayley transform can be computed efficiently. We compare our method to previous Lipschitz-constrained and orthogonal convolutional layers and show that it indeed preserves orthogonality to a high degree even for large convolutions. Applied to the problem of certified adversarial robustness, we show that networks incorporating the layer outperform existing deterministic methods for certified defense against $ell_2$-norm-bounded adversaries, while scaling to larger architectures than previously investigated. Code is available at https://github.com/locuslab/orthogonal-convolutions.



قيم البحث

اقرأ أيضاً

Strictly enforcing orthonormality constraints on parameter matrices has been shown advantageous in deep learning. This amounts to Riemannian optimization on the Stiefel manifold, which, however, is computationally expensive. To address this challenge , we present two main contributions: (1) A new efficient retraction map based on an iterative Cayley transform for optimization updates, and (2) An implicit vector transport mechanism based on the combination of a projection of the momentum and the Cayley transform on the Stiefel manifold. We specify two new optimization algorithms: Cayley SGD with momentum, and Cayley ADAM on the Stiefel manifold. Convergence of Cayley SGD is theoretically analyzed. Our experiments for CNN training demonstrate that both algorithms: (a) Use less running time per iteration relative to existing approaches that enforce orthonormality of CNN parameters; and (b) Achieve faster convergence rates than the baseline SGD and ADAM algorithms without compromising the performance of the CNN. Cayley SGD and Cayley ADAM are also shown to reduce the training time for optimizing the unitary transition matrices in RNNs.
145 - Xinping Yi 2020
In convolutional neural networks, the linear transformation of multi-channel two-dimensional convolutional layers with linear convolution is a block matrix with doubly Toeplitz blocks. Although a wrapping around operation can transform linear convolu tion to a circular one, by which the singular values can be approximated with reduced computational complexity by those of a block matrix with doubly circulant blocks, the accuracy of such an approximation is not guaranteed. In this paper, we propose to inspect such a linear transformation matrix through its asymptotic spectral representation - the spectral density matrix - by which we develop a simple singular value approximation method with improved accuracy over the circular approximation, as well as upper bounds for spectral norm with reduced computational complexity. Compared with the circular approximation, we obtain moderate improvement with a subtle adjustment of the singular value distribution. We also demonstrate that the spectral norm upper bounds are effective spectral regularizers for improving generalization performance in ResNets.
Proposed in 1991, Least Mean Square Error Reconstruction for self-organizing network, shortly Lmser, was a further development of the traditional auto-encoder (AE) by folding the architecture with respect to the central coding layer and thus leading to the features of symmetric weights and neurons, as well as jointly supervised and unsupervised learning. However, its advantages were only demonstrated in a one-hidden-layer implementation due to the lack of computing resources and big data at that time. In this paper, we revisit Lmser from the perspective of deep learning, develop Lmser network based on multiple convolutional layers, which is more suitable for image-related tasks, and confirm several Lmser functions with preliminary demonstrations on image recognition, reconstruction, association recall, and so on. Experiments demonstrate that Lmser indeed works as indicated in the original paper, and it has promising performance in various applications.
Vision Transformers (ViT) have recently emerged as a powerful alternative to convolutional networks (CNNs). Although hybrid models attempt to bridge the gap between these two architectures, the self-attention layers they rely on induce a strong compu tational bottleneck, especially at large spatial resolutions. In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers. This enables us to transition smoothly from any pre-trained CNN to its functionally identical hybrid model, called Transformed CNN (T-CNN). With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains over the CNN (+2.2% top-1 on ImageNet-1k for a ResNet50-RS) as well as substantially improved robustness (+11% top-1 on ImageNet-C). We analyze the representations learnt by the T-CNN, providing deeper insights into the fruitful interplay between convolutions and self-attention. Finally, we experiment initializing the T-CNN from a partially trained CNN, and find that it reaches better performance than the corresponding hybrid model trained from scratch, while reducing training time.
131 - Yaqing Wang , James T. Kwok , 2019
Convolutional sparse coding (CSC) can learn representative shift-invariant patterns from multiple kinds of data. However, existing CSC methods can only model noises from Gaussian distribution, which is restrictive and unrealistic. In this paper, we p ropose a general CSC model capable of dealing with complicated unknown noise. The noise is now modeled by Gaussian mixture model, which can approximate any continuous probability density function. We use the expectation-maximization algorithm to solve the problem and design an efficient method for the weighted CSC problem in maximization step. The crux is to speed up the convolution in the frequency domain while keeping the other computation involving weight matrix in the spatial domain. Besides, we simultaneously update the dictionary and codes by nonconvex accelerated proximal gradient algorithm without bringing in extra alternating loops. The resultant method obtains comparable time and space complexity compared with existing CSC methods. Extensive experiments on synthetic and real noisy biomedical data sets validate that our method can model noise effectively and obtain high-quality filters and representation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا