ﻻ يوجد ملخص باللغة العربية
This paper focuses on the analytical probabilistic modeling of vehicular traffic. It formulates a stochastic node model. It then formulates a network model by coupling the node model with the link model of Lu and Osorio (2018), which is a stochastic formulation of the traffic-theoretic link transmission model. The proposed network model is scalable and computationally efficient, making it suitable for urban network optimization. For a network with $r$ links, each of space capacity $ell$, the model has a complexity of $mathcal{O}(rell)$. The network model yields the marginal distribution of link states. The model is validated versus a simulation-based network implementation of the stochastic link transmission model. The validation experiments consider a set of small network with intricate traffic dynamics. For all scenarios, the proposed model accurately captures the traffic dynamics. The network model is used to address a signal control problem. Compared to the probabilistic link model of Lu and Osorio (2018) with an exogenous node model and a benchmark deterministic network loading model, the proposed network model derives signal plans with better performance. The case study highlights the added value of using between-link (i.e., across-node) interaction information for traffic management and accounting for stochasticity in the network.
The operation of future intelligent transportation systems (ITSs), communications infrastructure (CI), and power grids (PGs) will be highly interdependent. In particular, autonomous connected vehicles require CI resources to operate, and, thus, commu
As 5G communication technology develops, vehicular communications that require high reliability, low latency, and massive connectivity are drawing increasing interest from those in academia and industry. Due to these developing technologies, vehicula
In this paper, we address the much-anticipated deployment of connected and automated vehicles (CAVs) in society by modeling and analyzing the social-mobility dilemma in a game-theoretic approach. We formulate this dilemma as a normal-form game of pla
We consider a demand management problem of an energy community, in which several users obtain energy from an external organization such as an energy company, and pay for the energy according to pre-specified prices that consist of a time-dependent pr
We consider the problem of dividing limited resources to individuals arriving over $T$ rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A