ترغب بنشر مسار تعليمي؟ اضغط هنا

Interdependence-Aware Game-Theoretic Framework for Secure Intelligent Transportation Systems

135   0   0.0 ( 0 )
 نشر من قبل Aidin Ferdowsi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The operation of future intelligent transportation systems (ITSs), communications infrastructure (CI), and power grids (PGs) will be highly interdependent. In particular, autonomous connected vehicles require CI resources to operate, and, thus, communication failures can result in non-optimality in the ITS flow in terms of traffic jams and fuel consumption. Similarly, CI components, e.g., base stations (BSs) can be impacted by failures in the electric grid that is powering them. Thus, malicious attacks on the PG can lead to failures in both the CI and the ITSs. To this end, in this paper, the security of an ITS against indirect attacks carried out through the PG is studied in an interdependent PG-CI-ITS scenario. To defend against such attacks, the administrator of the interdependent critical infrastructure can allocate backup power sources (BPSs) at every BS to compensate for the power loss caused by the attacker. However, due to budget limitations, the administrator must consider the importance of each BS in light of the PG risk of failure, while allocating the BPSs. In this regard, a rigorous analytical framework is proposed to model the interdependencies between the ITS, CI, and PG. Next, a one-to-one relationship between the PG components and ITS streets is derived in order to capture the effect of the PG components failure on the optimality of the traffic flow in the streets. Moreover, the problem of BPS allocation is formulated using a Stackelberg game framework and the Stackelberg equilibrium (SE) of the game is characterized. Simulation results show that the derived SE outperforms any other BPS allocation strategy and can be scalable in linear time with respect to the size of the interdependent infrastructure.

قيم البحث

اقرأ أيضاً

As 5G communication technology develops, vehicular communications that require high reliability, low latency, and massive connectivity are drawing increasing interest from those in academia and industry. Due to these developing technologies, vehicula r communication is not limited to vehicle components in the forms of Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) networks, but has also been extended to connect with others, such as pedestrians and cellular users. Dedicated Short-Range Communications (DSRC) is the conventional vehicular communication standard for Intelligent Transportation Systems (ITS). More recently, the 3rd Generation Partnership Project introduced Cellular-Vehicle-to-Everything (C-V2X), a competitor to DSRC. Meanwhile, the Federal Communications Commission (FCC)issued a Notice of Proposed Rulemaking (NPRM) to consider deploying Unlicensed National Information Infrastructure (U-NII)devices in the ITS band with two interference mitigation approaches: Detect-and-Vacate (DAV)and Re-channelization (Re-CH). With multiple standard options and interference mitigation approaches, numerous regulatory taxonomies can be identified and notification of relevant technical challenges issued. However, these challenges are much broader than the current and future regulatory taxonomies pursued by the different countries involved. Because their plans differ, the technical and regulatory challenges vary. This paper presents a literature survey about the technical challenges, the current and future ITS band usage plans, and the major research testbeds for the U.S., Europe, China, Korea, and Japan. This survey shows that the most likely deployment taxonomies are (1) DSRC, C-V2X, and Wi-Fi with Re-CH; (2) DSRC and C-V2X with interoperation, and (3) C-V2X only. The most difficult technical challenge is the interoperability between the Wi-Fi-like DSRC and 4G LTE-like C-V2X.
In this paper, we address the much-anticipated deployment of connected and automated vehicles (CAVs) in society by modeling and analyzing the social-mobility dilemma in a game-theoretic approach. We formulate this dilemma as a normal-form game of pla yers making a binary decision: whether to travel with a CAV (CAV travel) or not (non-CAV travel) and by constructing an intuitive payoff function inspired by the socially beneficial outcomes of a mobility system consisting of CAVs. We show that the game is equivalent to the Prisoners dilemma, which implies that the rational collective decision is the opposite of the socially optimum. We present two different solutions to tackle this phenomenon: one with a preference structure and the other with institutional arrangements. In the first approach, we implement a social mechanism that incentivizes players to non-CAV travel and derive a lower bound on the players that ensures an equilibrium of non-CAV travel. In the second approach, we investigate the possibility of players bargaining to create an institution that enforces non-CAV travel and show that as the number of players increases, the incentive ratio of non-CAV travel over CAV travel tends to zero. We conclude by showcasing the last result with a numerical study.
A hybrid simulation-based framework involving system dynamics and agent-based simulation is proposed to address duopoly game considering multiple strategic decision variables and rich payoff, which cannot be addressed by traditional approaches involv ing closed-form equations. While system dynamics models are used to represent integrated production, logistics, and pricing determination activities of duopoly companies, agent-based simulation is used to mimic enhanced consumer purchasing behavior considering advertisement, promotion effect, and acquaintance recommendation in the consumer social network. The payoff function of the duopoly companies is assumed to be the net profit based on the total revenue and various cost items such as raw material, production, transportation, inventory and backorder. A unique procedure is proposed to solve and analyze the proposed simulation-based game, where the procedural components include strategy refinement, data sampling, gaming solving, and performance evaluation. First, design of experiment and estimated conformational value of information techniques are employed for strategy refinement and data sampling, respectively. Game solving then focuses on pure strategy equilibriums, and performance evaluation addresses game stability, equilibrium strictness, and robustness. A hypothetical case scenario involving soft-drink duopoly on Coke and Pepsi is considered to illustrate and demonstrate the proposed approach. Final results include P-values of statistical tests, confidence intervals, and simulation steady state analysis for different pure equilibriums.
148 - M. Seminara , T. Nawaz , S. Caputo 2020
This paper reports a detailed experimental characterization of optical performances of Visible Light Communication (VLC) system using a real traffic light for ultra-low latency, infrastructure-to-vehicle (I2V) communications for intelligent transport ation systems (ITS) protocols. Despite the implementation of long sought ITS protocols poses the crucial need to detail how the features of optical stages influence the overall performances of a VLC system in realistic configurations, such characterization has rarely been addressed at present. We carried out an experimental investigation in a realistic configuration where a regular traffic light (TX), enabled for VLC transmission, sends digital information towards a receiving stage (RX), composed by an optical condenser and a dedicated amplified photodiode stage. We performed a detailed measurements campaign of VLC performances encompassing a broad set of optical condensers, and for TX-RX distances in the range 3 - 50 m, in terms of both effective field of view (EFOV) and packet error rate (PER). The results show several nontrivial behaviors for different lens sets as a function of position on the measurement grid, highlighting critical aspects as well as identifying most suitable optical configurations depending on the specific application and on the required EFOV. In this paper we also provide a theoretical model for both the signal intensity and the EFOV as a function of several parameters, such as distance, RX orientation and focal length of the specific condenser. Our results could be very relevant in the near future to assess a most suited solution in terms of acceptance angle when designing a VLC system for real applications, where angle-dependent misalignment effects play a non-negligible role, and we argue that it could have more general implications with respect to the pristine I2V case mentioned here.
52 - Jing Lu 2021
This paper focuses on the analytical probabilistic modeling of vehicular traffic. It formulates a stochastic node model. It then formulates a network model by coupling the node model with the link model of Lu and Osorio (2018), which is a stochastic formulation of the traffic-theoretic link transmission model. The proposed network model is scalable and computationally efficient, making it suitable for urban network optimization. For a network with $r$ links, each of space capacity $ell$, the model has a complexity of $mathcal{O}(rell)$. The network model yields the marginal distribution of link states. The model is validated versus a simulation-based network implementation of the stochastic link transmission model. The validation experiments consider a set of small network with intricate traffic dynamics. For all scenarios, the proposed model accurately captures the traffic dynamics. The network model is used to address a signal control problem. Compared to the probabilistic link model of Lu and Osorio (2018) with an exogenous node model and a benchmark deterministic network loading model, the proposed network model derives signal plans with better performance. The case study highlights the added value of using between-link (i.e., across-node) interaction information for traffic management and accounting for stochasticity in the network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا