ترغب بنشر مسار تعليمي؟ اضغط هنا

Membership-Mappings for Data Representation Learning

350   0   0.0 ( 0 )
 نشر من قبل Mohit Kumar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study introduces using measure theoretic basis the notion of membership-mapping for representing data points through attribute values (motivated by fuzzy theory). A property of the membership-mapping, that can be exploited for data representation learning, is of providing an interpolation on the given data points in the data space. The study outlines an analytical approach to the variational learning of a membership-mappings based data representation model. An alternative idea of deep autoencoder, referred to as Bregman Divergence Based Conditionally Deep Autoencoder (that consists of layers such that each layer learns data representation at certain abstraction level through a membership-mappings based autoencoder), is presented. Experiments are provided to demonstrate the competitive performance of the proposed framework in classifying high-dimensional feature vectors and in rendering robustness to the classification.



قيم البحث

اقرأ أيضاً

High dimensional data analysis for exploration and discovery includes three fundamental tasks: dimensionality reduction, clustering, and visualization. When the three associated tasks are done separately, as is often the case thus far, inconsistencie s can occur among the tasks in terms of data geometry and others. This can lead to confusing or misleading data interpretation. In this paper, we propose a novel neural network-based method, called Consistent Representation Learning (CRL), to accomplish the three associated tasks end-to-end and improve the consistencies. The CRL network consists of two nonlinear dimensionality reduction (NLDR) transformations: (1) one from the input data space to the latent feature space for clustering, and (2) the other from the clustering space to the final 2D or 3D space for visualization. Importantly, the two NLDR transformations are performed to best satisfy local geometry preserving (LGP) constraints across the spaces or network layers, to improve data consistencies along with the processing flow. Also, we propose a novel metric, clustering-visualization inconsistency (CVI), for evaluating the inconsistencies. Extensive comparative results show that the proposed CRL neural network method outperforms the popular t-SNE and UMAP-based and other contemporary clustering and visualization algorithms in terms of evaluation metrics and visualization.
The remarkable success of machine learning has fostered a growing number of cloud-based intelligent services for mobile users. Such a service requires a user to send data, e.g. image, voice and video, to the provider, which presents a serious challen ge to user privacy. To address this, prior works either obfuscate the data, e.g. add noise and remove identity information, or send representations extracted from the data, e.g. anonymized features. They struggle to balance between the service utility and data privacy because obfuscated data reduces utility and extracted representation may still reveal sensitive information. This work departs from prior works in methodology: we leverage adversarial learning to a better balance between privacy and utility. We design a textit{representation encoder} that generates the feature representations to optimize against the privacy disclosure risk of sensitive information (a measure of privacy) by the textit{privacy adversaries}, and concurrently optimize with the task inference accuracy (a measure of utility) by the textit{utility discriminator}. The result is the privacy adversarial network (systemname), a novel deep model with the new training algorithm, that can automatically learn representations from the raw data. Intuitively, PAN adversarially forces the extracted representations to only convey the information required by the target task. Surprisingly, this constitutes an implicit regularization that actually improves task accuracy. As a result, PAN achieves better utility and better privacy at the same time! We report extensive experiments on six popular datasets and demonstrate the superiority of systemname compared with alternative methods reported in prior work.
This paper proposes a framework for group membership protocols preventing the curious but honest server from reconstructing the enrolled biometric signatures and inferring the identity of querying clients. This framework learns the embedding paramete rs, group representations and assignments simultaneously. Experiments show the trade-off between security/privacy and verification/identification performances.
Supply chain network data is a valuable asset for businesses wishing to understand their ethical profile, security of supply, and efficiency. Possession of a dataset alone however is not a sufficient enabler of actionable decisions due to incomplete information. In this paper, we present a graph representation learning approach to uncover hidden dependency links that focal companies may not be aware of. To the best of our knowledge, our work is the first to represent a supply chain as a heterogeneous knowledge graph with learnable embeddings. We demonstrate that our representation facilitates state-of-the-art performance on link prediction of a global automotive supply chain network using a relational graph convolutional network. It is anticipated that our method will be directly applicable to businesses wishing to sever links with nefarious entities and mitigate risk of supply failure. More abstractly, it is anticipated that our method will be useful to inform representation learning of supply chain networks for downstream tasks beyond link prediction.
We propose Deep Autoencoding Predictive Components (DAPC) -- a self-supervised representation learning method for sequence data, based on the intuition that useful representations of sequence data should exhibit a simple structure in the latent space . We encourage this latent structure by maximizing an estimate of predictive information of latent feature sequences, which is the mutual information between past and future windows at each time step. In contrast to the mutual information lower bound commonly used by contrastive learning, the estimate of predictive information we adopt is exact under a Gaussian assumption. Additionally, it can be computed without negative sampling. To reduce the degeneracy of the latent space extracted by powerful encoders and keep useful information from the inputs, we regularize predictive information learning with a challenging masked reconstruction loss. We demonstrate that our method recovers the latent space of noisy dynamical systems, extracts predictive features for forecasting tasks, and improves automatic speech recognition when used to pretrain the encoder on large amounts of unlabeled data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا