ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a recent and under-researched paradigm for the task of event detection (ED) by casting it as a question-answering (QA) problem with the possibility of multiple answers and the support of entities. The extraction of event triggers is, thus, transformed into the task of identifying answer spans from a context, while also focusing on the surrounding entities. The architecture is based on a pre-trained and fine-tuned language model, where the input context is augmented with entities marked at different levels, their positions, their types, and, finally, the argument roles. Experiments on the ACE~2005 corpus demonstrate that the proposed paradigm is a viable solution for the ED task and it significantly outperforms the state-of-the-art models. Moreover, we prove that our methods are also able to extract unseen event types.
Knowledge-dependent tasks typically use two sources of knowledge: parametric, learned at training time, and contextual, given as a passage at inference time. To understand how models use these sources together, we formalize the problem of knowledge c
We introduce DELFT, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. DELFT builds a free-text knowledge graph from Wikipedia, with entitie
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of
Every day, thousands of customers post questions on Amazon product pages. After some time, if they are fortunate, a knowledgeable customer might answer their question. Observing that many questions can be answered based upon the available product rev
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the gener