ﻻ يوجد ملخص باللغة العربية
We describe the X-ray pulse profile models we use, and how we use them, to analyze Neutron Star Interior Composition Explorer (NICER) observations of rotation-powered millisecond pulsars to obtain information about the mass-radius relation of neutron stars and the equation of state of the dense matter in their cores. Here we detail our modeling of the observed profile of PSR J0030+0451 that we analyzed in Miller et al. (2019) and Riley et al. (2019) and describe a cross-verification of computations of the pulse profiles of a star with R/M 3, in case stars this compact need to be considered in future analyses. We also present our early cross-verification efforts of the parameter estimation procedures used by Miller et al. (2019) and Riley et al. (2019) by analyzing two distinct synthetic data sets. Both codes yielded credible regions in the mass-radius plane that are statistically consistent with one another and both gave posterior distributions for model parameter values consistent with the values that were used to generate the data. We also summarize the additional tests of the parameter estimation procedure of Miller et al. (2019) that used synthetic pulse profiles and the NICER pulse profile of PSR J0030+0451. We then illustrate how the precision of mass and radius estimates depends on the pulsars spin rate and the size of its hot spot by analyzing four different synthetic pulse profiles. Finally, we assess possible sources of systematic error in these estimates made using this technique, some of which may warrant further investigation.
We present the set of deep Neutron Star Interior Composition Explorer (NICER) X-ray timing observations of the nearby rotation-powered millisecond pulsars PSRs J0437-4715, J0030+0451, J1231-1411, and J2124-3358, selected as targets for constraining t
We describe the model of surface emission from a rapidly rotating neutron star that is applied to Neutron Star Interior Composition Explorer X-ray data of millisecond pulsars in order to statistically constrain the neutron star mass-radius relation a
In recent years our understanding of the dense matter equation of state (EOS) of neutron stars has significantly improved by analyzing multimessenger data from radio/X-ray pulsars, gravitational wave events, and from nuclear physics constraints. Here
Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists, because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches fo
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter, in particul