ﻻ يوجد ملخص باللغة العربية
We present the set of deep Neutron Star Interior Composition Explorer (NICER) X-ray timing observations of the nearby rotation-powered millisecond pulsars PSRs J0437-4715, J0030+0451, J1231-1411, and J2124-3358, selected as targets for constraining the mass-radius relation of neutron stars and the dense matter equation of state via modeling of their pulsed thermal X-ray emission. We describe the instrument, observations, and data processing/reduction procedures, as well as the series of investigations conducted to ensure that the properties of the data sets are suitable for parameter estimation analyses to produce reliable constraints on the neutron star mass-radius relation and the dense matter equation of state. We find that the long-term timing and flux behavior and the Fourier-domain properties of the event data do not exhibit any anomalies that could adversely affect the intended measurements. From phase-selected spectroscopy, we find that emission from the individual pulse peaks is well described by a single-temperature hydrogen atmosphere spectrum, with the exception of PSR J0437-4715, for which multiple temperatures are required.
We describe the model of surface emission from a rapidly rotating neutron star that is applied to Neutron Star Interior Composition Explorer X-ray data of millisecond pulsars in order to statistically constrain the neutron star mass-radius relation a
We describe the X-ray pulse profile models we use, and how we use them, to analyze Neutron Star Interior Composition Explorer (NICER) observations of rotation-powered millisecond pulsars to obtain information about the mass-radius relation of neutron
Neutron stars are not only of astrophysical interest, but are also of great interest to nuclear physicists, because their attributes can be used to determine the properties of the dense matter in their cores. One of the most informative approaches fo
The unknown state of matter at ultra-high density, large proton/neutron number asymmetry, and low temperature is a major long-standing problem in modern physics. Neutron stars provide the only known setting in the Universe where matter in this regime
We show how observations of gravitational waves from binary neutron star (BNS) mergers over the next few years can be combined with insights from nuclear physics to obtain useful constraints on the equation of state (EoS) of dense matter, in particul